

GX Developer
Custom Application Development Toolkit

for extending Oasis montaj and standalone applications
USER GUIDE and

REFERENCE MANUAL

Manual Version:

v7.0, (November 17, 2009)

w w w . g e o s o f t . c o m

Contents
Geosoft GX Developer License Agreement 1

Year 2000 Date Considerations 1

Introduction 3

Who should use GX Developer? 3

How this manual is organized 4

Hardware and Software Requirements 4

Installing GX Developer 4

Obtaining Additional Information and Help 5

Part 1 - GX Developer Basics 7

GXC Language 8

Elements of GXC 8

Statements 17

Calling Functions 21

Preprocessor Directives 22

GRC Resources and Dialogs 25

The FORM Resource 26

FORM Components 27

The LIST Resource 31

List Components — Description 31

The HELP Resource 32

Using WinHelp 33

Linking Winhelp to Oasis montaj GXs 33

Step 1 – The GRC File 34

Step 2 – The myhelp.ini file (Mapping File) 34

Step 3 – Create a Custom Winhelp File 35

Add custom Help INI to Oasis montaj 36

Step 4 – Copy the Files and Restart Oasis montaj 36

Combining Resources and Components 36

Working with Menus 37

SHELL item action 39

Working with Toolbars 40

File Names 41

Internal commands 41

Pop-Up Menus 41

The SHELL command 42

Displaying images for items in menus 43

Controlling item activation 43

How menus are loaded 43

Geosoft Environment Settings (geosettings.meta) 44

Part 2 - Working with GX Developer 45

Building a GX Application Suite 45

Object-Oriented Programming 45

Differences between Procedural and Object-Oriented Programming 46

Working with Library Functions 47

GX Structure and Program Flow 48

The COPY GX 48

Working with Databases 53

Opening and Locking a Database 54

Selecting Lines for Processing 54

Locking and Unlocking Lines and Channels 56

Parameter Storage in Oasis montaj 58

Parameter Storage in the geosettings META file 58

Parameter Storage in the Project 59

Parameter Storage in Oasis montaj objects 62

Working with Maps 63

Views and Groups 63

Base and Data Views 64

Opening and Locking a Map 64

Accessing Views 65

Starting a Drawing Group 65

Setting Group Attributes 66

Adding an Image to a Map 67

Clipping Objects in a View 68

Creating a Maker 70

Working with 3D Views 70

Termination and Error Handling 72

The Exit_SYS function 72

The Cancel_SYS function 72

The Abort_SYS function 73

Messages and Warnings to Users 73

Using Progress Indicators 73

Creating a “Wizard” GX 75

Calling GXs from within a GX 77

Preparing your GX to run as a Script 79

Compilation and Debugging 79

Command-Line Compilation 79

Debugging Tips and Suggestions 80

Part 3 – GX Function Libraries 82

Classes and Handles 82

Geosoft Licensing Issues 82

VIEWGX – License Analysis 83

Part 4 – GX Debugger 87

Usage 88

Notes 89

Part 5 – Working with other languages 91

Other Language Support 91

C Programmer Support 91

Introduction 91

Installation 92

Compilation Environment 93

External Stand-Alone Applications 94

DLLs within Oasis montaj 94

Passing Arguments 96

Accessing Data 97

Error handling 98

GUI Applications 98

Licensing Issues 98

Calling Conventions 98

Visual Basic Programmer Support 98

Introduction 98

FORTRAN Programmer Support 99

Introduction 99

Installation 99

Preparing your FORTRAN code for F2C 99

Running F2C and Building the DLL 104

Running the EXAMPLE GX 104

Licensing Issues 105

Programming Support 105

.NET Programmer Support 105

External Stand-Alone Applications 105

Assemblies within Oasis montaj 106

Error Handling 107

Stand Alone GUI Applications 107

Licensing Issues 107

Part 6 - Using the GX API Externally 108

Introduction 108

Registry 109

Licensing 109

Part 7 – UNICODE 110

Introduction 110

Implementation 110

Compiler 110

GX Developers 110

API Interfaces 111

GEOGX (ANSI) 111

GEOGX_U (UNICODE) 111

GEOGX_UTF8 (UTF-8) 111

MFC DLLs Inside Oasis Montaj 111

Part 8 – Efficient coding techniques 112

Introduction 112

Mixed Code Efficiency 112

Examples 112

Geosoft GX Developer License Agreement 1

Geosoft GX Developer License Agreement
GEOSOFT grants you a license to use GX Developer including all GX Developer tools and source
code included with the GX Developer installation for whatever purpose you like. You may provide
copies of any or all of GX Developer to anyone you wish, and you may freely modify GX source code
to meet your own purposes and distribute any derivative products you create as you see fit.

1. SERVICES:

GX Developer is supported by the GX User Community through the [GXnet] list, which is
maintained by Geosoft. To join the [Gxnet] user list, select Help->User Forums->Gxnet from
the Oasis montaj menu.

GX Developer is not directly supported by Geosoft unless you have a separate agreement
with Geosoft to provide you with support.

2. WARRANTY:

GEOSOFT does not warrant that the functions contained in GX Developer will meet your
requirements or will operate in the combinations which may be selected for use by you, or
that the operation of the GX Developer will be uninterrupted or error free or that all program
defects will be corrected.

Each GX Developer shall be furnished to me in accordance with the terms of this Agreement.
No warranties, either express or implied, are made to me regarding the Licensed Program.

THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES,
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Year 2000 Date Considerations
The Licensed Programs have been tested conform to DISC PD2000 1:1998 Year 2000
Conformity Requirements (www.bsi.org.uk/disk/year2000/2000.html), with the exception of
clause 3.3.2, paragraph b. Section 3.3.2 paragraph b) requires that inferences for two-digit
year dates greater than or equal to 50 imply 19xx, and those with a value equal to or less
than 50 imply 20xx. The Licensed Programs will recognise all two-digit years as 19xx. This is
to prevent errors importing historical data that pre-dates 1950. All dates that follow 1999 must
use four digit dates in the Licensed Programs.

Introduction 3

Introduction
This manual is a programming reference guide to Geosoft’s GX Developer toolkit —
a development environment that enables you to customize the Oasis montaj
environment, add your own programs, and create full custom application suites that
can be run from Oasis montaj.

The latest release of this document as well as the full download for GX Developer is
available at: http://www.geosoft.com/support/devtools/

This document also covers the use of GX Developer External API. If you intend to
use External API, please see GX Developer – External API in Part 5:– Working
with Other Programming Languages (page 91).

Who should use GX Developer?
You should use GX Developer if you want to do any of the following, which are
listed in order of difficulty:

• You want to modify an existing GX to meet your needs. Usually this is a simple
modification to improve the efficiency of your use of the system.

• You want to create your own custom GX to do something special in the system.
Your GX will use the GX API.

• You have your own algorithm in a separate DLL and you want to call it from
Oasis montaj.

• You have a separate processing environment and you want to create/open Geosoft
files (databases, maps) and/or apply Geosoft processes to your data.

• You are a third party developer who wants to create and market products that
work with Oasis montaj or with the external API.

A basic requirement for using the GX Developer is that you are an earth science
professional responsible for developing and/or distributing data processing software.
However, you do not have to be a computer scientist to develop GX applications. The
GX Developer programs and GX Programming Language are intended to be easy-to-
learn so that anyone with the equivalent of a university level programming credit
should be able to develop their own applications with a minimum of effort.

Because the GX Developer enables you to create custom interactive components for
user input and online help, you may find that interface design and help development
skills are useful.

GX Developer takes advantage of many of the features of the Oasis montaj Data
Processing System, and we recommend that you acquire a working knowledge of
Oasis montaj. If you have not already done so, please read the corresponding
manual. This documentation describes the system in detail, including the Graphical
User Interface, database environment and processing functionality.

Do not use GX Developer if…

• If you do not want to write your own programs.

http://www.geosoft.com/support/devtools/�

4 Introduction

• If you are not already familiar and comfortable with some other programming
language. GX Developer should not be your first programming experience.

• If you are a FORTRAN programmer and, for whatever reason, you are not able to
learn and understanding a C-like, object-oriented programming environment.

• If you require programming support and you do not have a GX Developer
support agreement from Geosoft. Please contact your regional Geosoft office for
more information about this service.

How this manual is organized
This manual is organized into six parts:

• Part 1: GX Developer Basics provides reference material about GX Developer,
the GXC language and GRC resources (page 7).

• Part 2: Working with menus provides more information about working with GX
Developer, object-oriented programming, and how to work with key components
of the system (page 45).

• Part 3: GX Function Libraries describes the libraries (classes and functions)
available in the GX API (Application Programming Interface) (page 82).

• Part 4: GX Debugger provides debugging software modelled after the general
style of Microsoft’s Visual Studio (page 87).

• Part 5: Working with Other Programming Languages provides detailed
information on how to use GX Developer from other programming languages
(page 91).

• Part 6: Using the GX API Externally provides instructions on how to create
applications that can run indpendently from Oasis montaj.

Hardware and Software Requirements
Any system running Oasis montaj is capable of running GX Developer. You must
have Oasis montaj installed and licensed on your system.

Installing GX Developer
Geosoft GX Developer Toolkit is a separate install package freely available on the
download page of the Geosoft web page (www.geosoft.com). The toolkit is installed
by running the EXE that you find in the downloaded ZIP file.

Click the [Next>] button and the License Agreement will be displayed. Please read
the agreement carefully and choose to either “accept” or “do not accept”. If “accept”
is selected, click the [Next>] button and the Setup Type dialog will be displayed.
Selecting the Complete option installs close to 90MB to your system in the
C:\Program Files directory. Selecting Custom provides two options as follows:

GX Development This includes the GX compilers and documentation that
enables you to create custom GX's that can be run from
within Oasis montaj. Choosing GX Development will

Introduction 5

also install all of the sample GX source code.

External Application
Development

This includes libraries and examples to write custom
applications using C#, C++. Fortran, VB to run with
Oasis montaj.

When you have made your selection, click the [Next>] button and a final screen will
be displayed indicating you are ready to install, click the [Install] button. Once all of
the files have been copied, click the [Finish] button.

After you complete your installation, depending on what you have installed, you will
have the following directories and files in your C:\Program Files\Geosoft\GX
Developer directory:

Directory What it Contains

apps\dll Redistributable DLL files that your clients require to execute your
external Geosoft application. These DLLs contain the entire Geosoft
API.

apps\examples Various examples to aid in your development. C, C#, and Fortran are
highlighted.

apps\include Header files that your code must include to use the Geosoft API calls.

apps\lib Completed DLL or EXE application will link with these library files.
gx\bin Compilers here: gpp.exe, grc.exe, gxc.exe, viewgx.exe.

gx\include Header files (GXH files) which provide GX prototypes for all functions
in the GX API.

gx\src Directory contains the source code for almost all Geosoft GXs.

hlp PDF documentation outlining GX Developer. Also contains the GX
Developer compiled help for all methods.

Obtaining Additional Information and Help
The GX Programming Language is a subset of the C Programming Language. This
document does not deal with the C language in detail and you may wish to refer to a
C language programming guide, such as:

Kernighan, B.W. and Ritchie, D. M., 1988. The C Programming Language, PTR
Prentice Hall, Englewood Cliffs, N.J., U.S.A.

We recommend that you refer to the sample Source code shipped with the GX
Developer. It will provide you with a wealth of information about how to program
GXs and use the GX Programming Language. The GX Developer compiled help file
documents all classes and methods. This help system is produced from our Header
(.GXH) files but contains the definitive documentation.

As part of your support contract for GX Developer, Geosoft can help you with
questions on how to compile and run your GXs, and we can answer all general
questions about GX Developer. We can also address any problems or usage
differences from this documentation. However, we cannot support programming

6 Introduction

questions or usage of the language to solve specific problems. If such help is required,
Geosoft Technical Services can provide training or specific help on a fee basis. Please
contact your regional Geosoft office for more information about this service.

Another source of help is the GXNET list, which is available to all users that have e-
mail access. GXNET provides GX Developers with a forum to help each other and
share information. Geosoft monitors this discussion group but we do not necessarily
provide technical support via the list and we are not responsible for the technical
accuracy of information obtained from GXNET.

You can subscribe to GXNET from the Oasis montaj Help menu, or online at
http://www.geosoft.com/support/forums/

You can also find out more information about our list servers from the support section
of the Geosoft web site: http://www.geosoft.com/support/

http://www.geosoft.com/support/forums/�
http://www.geosoft.com/support/�

Part 1 - GX Developer Basics 7

Part 1 - GX Developer Basics
This part of the documentation describes how to use the GX Developer compilers
and provides reference information about the language rules and syntax. Part 2 -
Working with GX Developer provides a topic-oriented reference guide that explains
how to use a number of key components in the system.

You will use GXC, the GX Programming Language, to create GX programs. GXC is
a C-like language that includes the majority of C expressions and control statements
together with a simplified set of data types. Since our objective is to keep the
language easy-to-use, GXC does not include support for pointers, structures or
callable functions other than those included in the Geosoft function libraries (the GX
API) or in other DLL’s that conform to the GX API requirements.

GXC source code is compiled using the GX source code compiler gxc.exe. As with
standard C, your source code is first translated by a C-Pre-processor that modifies the
code based on Pre-processor directives. Pre-processor directives can be used to
control which code is compiled, define constants, define macro statements to be re-
used in your code, and to include other files in the compilation. See Pre-processor
Directives for more information.

This chapter describes the basic C language that is implemented in GXC. Anyone
familiar with C-Language programming may wish to proceed immediately to
Working with Menus.

For reference, following is a very simple GXC program that displays a message to the
user. This program contains all the minimum required elements of a GXC program:

Source Code Comments

NAME = "Say hello"
VERSION = "v1 Copyright Geosoft Inc. 1999"
DESCRIPTION = "Just say Hello"

Every GX begins with these three
keywords (NAME, VERSION and
DESCRIPTION), which are assigned to
strings that identify and describe the
GX.

// --- include the GX API prototype headers
#include <all.gxh>

The GX API (Application
Programming Interface) is described in
gxh files in the GxDev/gxh directory.
This statement includes the file all.gxh,
which in turn includes all other gxh
files. The gxh files provide prototypes
of all functions together with and
function documentation for the GX
programmer.
Note that comments begin with the
characters “//” and are ignored.
Standard C-style comments “/*…*/”
are also supported.

// --- declare required variables here --- This simple example does not require
any variables, but if it did, all variables
would be declared here.

8 Part 1 - GX Developer Basics

{ // --- start program statements ---
 DisplayMessage_SYS("Hello","Hello
world");
} // --- program end ---

The program statements are enclosed in
braces { }. This program contains a
single statement that displays a
message. The usage of the
DisplayMessage_SYS statement is
described in GxDev/gxh/sys.gxh.

Note: Unlike many other programming languages, the C and GXC languages are
case sensitive. This means that the tokens “DisplayMessage_SYS” and
“displayMESSAGE_sys” are different to the GXC compiler.

GXC Language
This section describes the elements contained in the GXC Language.

Elements of GXC

TOKENS

Tokens are the smallest indivisible elements recognised by the GX compiler. A token
is the source-program text that the compiler does not break down into component
elements. Tokens may be keywords, identifiers, constants, strings, operators, or
punctuation characters. Each of these is described in the following sections.

WHITE-SPACE CHARACTERS

Space, tab, linefeed, carriage-return, form-feed, vertical-tab and newline characters
are called “white-space characters” because they serve the same purpose as spaces
between words in a sentence on a page. In GXC, they serve to separate tokens and
make GXC source code more readable. When reading source code, the GXC compiler
ignores white-space characters except when they are used to separate tokens and as
part of character constants or strings. Note that the compiler also treats comments as
white space.

COMMENTS

A comment is a sequence of characters that begins with a forward slash – asterisk
(/*) and ends with an asterisk – forward slash (*/). For example:
/* This is a comment.
 This is a continuation of the comment. */

GXC also supports single-line comments preceded by two forward slashes as in the
following example:
// This is a valid comment in GXC.

The next newline character that is not preceded by a backslash terminates comments
in this format (\).

KEYWORDS

Keywords are are tokens that have special meaning to the GXC compiler. They
consist of the following:

Part 1 - GX Developer Basics 9

break case continue default DESCRIPTION

do else for if int

NAME real RESOURCE sizeof string

switch typedef VERSION void while

GX-specific keywords consist of the NAME, VERSION, DESCRIPTION and
RESOURCE keywords listed above. These identify graphical resources and special
sections in Source files to the compiler. The other keywords are implemented exactly
as in the C language.

Keyword names cannot be used for any purpose other than the defined by GXC.
However, identifier names can be replaced by the pre-processor if they have been
redefined using a #define statement.

IDENTIFIERS

“Identifiers”, or “symbols” are the names that you supply for variables and functions
in your programs. You cannot use a keyword as an identifier name. You create an
identifier by specifying it in the declaration of a variable or function. You cannot use
an identifier unless it has been declared.

We strongly recommend that you begin all identifier names with a lowercase
character that describes the data type, or in the case of functions, the function return
value. This makes your code much easier to read and maintain. You will find the
following recommended prefix characters and their data types used in the Geosoft GX
code:

i an integer

r a real (floating-point)

s a string

h a class handle (This convention is often used in Geosoft source code, but not
always. Identifiers that begin with an upper-case character can usually be
assumed to be class handles.)

DECLARING VARIABLE IDENTIFIERS

All variables used in a GXC program must be declared immediately before the
opening brace for the GXC program statements. Variables are declared by specifying
a data type followed by a comma-separated list of variable names and a semicolon to
end the declaration statement. The GX language supports a simplified selection of
variable types - int, real, and string as well as Class handles:

int The int variable type stores integers, and replaces the short and long types found in normal
C. It is equivalent to the 4-byte long type. int variables may also be declared and
accessed as arrays, as in the following examples:

int iVal;
int(4) iNum;
{
 iVal = 2;

10 Part 1 - GX Developer Basics

 iNum[0] = iVal + 1;
 iNum[1] = 2*iNum[0];
}

Note that array allocations are done with round brackets “(4)”, while access is
performed using square brackets “[0]”. As with C variables, indexing begins at 0 and
proceeds to one less than the allocated size. Note also that the declaration syntax for
arrays is a different from standard C in that the array size is part of the variable type,
not the variable name.

real The real variable type stores floating point numbers, and replaces the float and
double types found in normal C. It is equivalent the 8-byte double type. real variables
may be declared and accessed as arrays, as in the following examples:

real rVal;
real(4) rNum;
{
 rVal = rNum[0];
 rNum[2] = rNum[1];
}

string the string type is roughly equivalent to the char type in normal C. string variables
must be declared with a maximum string length, as in the following examples:

string(DB_SYMB_NAME_SIZE) sInCh,sChan;
string(80) sTextLine;
string(GS_MAX_PATH) sFile,sData;

Unlike the int and real variables, string variables may not be accessed by
element indices; for example the following is illegal:
sFile[6] = ’a’; // illegal statement

Instead, the STR library functions must be used to manipulate strings.

Class Handles are instances of Geosoft object classes that are defined in the GX API.
To use a class you must declare a class variable as in the following examples:

DB hData; // hData is a handle to a DB class that deals with databases.

DGW hDialog; // hDialog is a handle to a DGW class that deals with resource dialogs.

LST hChannelList; // hChannelList is a handle to an LST class that deals with lists.

DECLARING FUNCTION IDENTIFIERS

GXs call functions to perform most of the real processing work and to control the
Oasis montaj interface. The suite of functions available to the GX programmer is
called the GX API, or GX Application Programming Interface. Before calling a
function, the function identifier must be declared in a function prototype statement.
All Geosoft function prototypes are defined in the GXH files in the GxDev/gxh
directory. You can refer to GX Function Libraries for more information on working
with GX functions in the GX API.

Part 1 - GX Developer Basics 11

A function prototype statement is normally contained in a separate GXH file that is
included (using the #include directive) in your source code immediately before
your variable declarations. Following is the syntax for a function identifier:

[dll_name] return_type function_name(arg_1_type,arg_2_type,…);

dll_name or
license_type

The name of the DLL that contains the function. Note that functions provided
by Geosoft use this field to identify the type of license this function can used
under. The valid license types for Geosoft are: “_public”, “_licensed”,
“_extended” and their application versions: “_public_app”, “_licensed_app” and
“_extended_app”. See the Geosoft License Issues section for more details.

return_type The function return value type, which can be an int, a real, a class, or
void. The type void indicates that the function does not return a value. Note
that in C and GXC, you can call a function that returns a type just as you would
call a void function.

function_name The function identifier name that you use to call the function.

arg_#_type A list of types that correspond to the required argument types. Unlike C, GXC
does not support functions with undefined argument lists. The “var” qualifier
should precede any arguments that may be modified by the function.

For example, the following prototype defined the function identifier ReadReal_BF
in the BF class, which can be used to read a real value from a binary file:

[_public] void
ReadReal_BF(BF, // BF handle
 int, // BF element type, one of GS_? types in Geosoft.gxh
 var real); // real data returned

This is a void function contained in the geogx dll. The function takes three arguments,
and the third argument will be modified by the function to hold the real value read
from the binary file. You can refer to the Geosoft.gxh file to find the basic data types
that are supported in the read.

You can create function declarations to functions in your own DLLs by creating your
own GXH file and including it in your GXC code. All of your functions must be
contained in a Dynamic Link Library (DLL) that is accessible when your GX is run.
Refer to DLLs within Oasis montaj for more information on working with your own
libraries.

CONSTANTS

Constants are tokens that evaluate to a number or a string in your code. Constants can
be integers, floating-point numbers or strings enclosed in double quotes.

INTEGER AND FLOATING POINT CONSTANTS

Numeric constants are either integer or floating point real numbers, as illustrated in
the following example:
int iValue;
real rValue;

12 Part 1 - GX Developer Basics

iValue = 1234; // assigns integer to constant
iValue = 0777; // assigns integer to constant octal 777 (decimal 511)
ivalue = 0xff; // assigns integer to constant hex ff (decimal 255)
rValue = 32.1; // assigns real to a constant
rValue = 3.21e1; // Real constant in exponential notation

Note that numeric constants can only be used in context with the implied constant
type. The implied type of a constant is integer unless there is a decimal place or the
constant is in exponential format. You can use a type cast to change the type of a
constant if required (see Casting Types).

STRING CONSTANTS

A string constant is a sequence of characters enclosed in double quotes. Strings are
always terminated by an implied null character. In GXC, you must use the STR
methods defined in str.gxh to work with strings. For example, the Strcpy_STR
function will copy a string constant to a string variable:

String(16) sName;
Strcpy_STR(sName,"Bill"); // copies the constant "Bill" to string variable sName

Special characters in a string can be defined using escape sequences. An escape
sequence consists of a backslash character (\) followed by one or more characters.
The following table defines the ANSI escape sequences supported in GXC:

Escape
Sequence

Represents

\a Bell

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\” Double quotation

\\ Backslash

\ooo ASCII character in octal

\xhhh ASCII character in hexadecimal
notation

If a backslash character precedes a character not specified in the table, the undefined
character is interpreted as the character itself. If a backslash appears as the last
character in a line (immediately before a new line character), the next line is
considered a continuation of the current line. This can be useful for defining long
string constants.

Part 1 - GX Developer Basics 13

DEFINING CONSTANTS

Constants that are used repeatedly in your GX source code can be defined once using
a #define statement to establish a token name to represent the constant. The
#define statement must start in column 1 of the source line, it must be the only
statement on the line, and it must precede the first use of the constant token. For
example, here we define the token “TWOPI” to represent the numeric constant
6.2831853:

#define TWOPI 6.2831853

It is a common convention to use all upper-case characters for the defined token, in
this case TWOPI. All occurrences of TWOPI in the source code that follow this line
will be replaced by the constant “6.2831853”:

rCirc = TWOPI * rRadius; // seen as rCirc = 6.2831853 * rRadius

The GX Programming Language predefines many constant values in the GXH header
files, both in the geosoft.gxh file and in the individual function library header files.
For example, the integer and real dummy values are defined in geosoft.gxh as
follows:
#define iDUMMY -2147483647
#define rDUMMY -1.0E32

Note that #define statement lines cannot contain comments.

You can use the backslash character before the end of a line to define a long string
constant that continues onto the next line:

#define LONG_STR “Long strings can be br\
oken into two or more\
pieces.”

Note that if there are any white-space characters following the backslash, other than a
newline character, the continuation is not recognised.

OPERATORS

Operators are symbols (both single characters and character combinations) that enable
you to manipulate values. There are three types of operators. A unary operator
consists of either a unary operator prefix added to an operand, or the sizeof
operator followed by an expression. The expression can be either the name of a
variable or a cast expression. If the expression is a cast expression, it must be
enclosed in parentheses. A binary expression consists of two operands joined by a
binary operator. A ternary expression consists of three operands joined by the ternary
operator. Note that this latter type of expression is supported in the EXP class but not
by the GX syntax. GXC includes the following operators:

Symbol Type Description

+ - unary Positive and negative operand.

14 Part 1 - GX Developer Basics

! unary Logical NOT applied to operand.

sizeof unary Size of operand in bytes

(int) (real) (class) unary Cast (convert) operand on the right to the type
specified. Casting a real type to an int will truncate
the real to the integer closest to zero.

= binary Assignment of the evaluated operand on the right of
the operator to a variable on the left.

++ -- unary Increment and decrement assignment. If the operator
precedes the operand, the operand is incremented or
decremented before the expression is evaluated. If the
operator follows the operand, the operand is
incremented or decremented after the expression is
evaluated.

= += -= *= /= %= binary Arithmetic operators evaluate the operand on the right
of the operator and apply the arithmetic operator to
change the operand on the left. For example, the
following are equivalent:
 iVal += 4 * iData;
 iVal = iVal + (4 * iData);

* / % binary Multiply, divide and remainder. The remainder
operator evaluates to the remainder after dividing the
left operand by the right operand.

+ - binary Addition and subtraction.

< > <= >= == != binary Relational evaluate to 1 if true, 0 if false

&& binary Logical AND evaluates to 1 (true) if left and right
operands are non-zero, 0 (false) otherwise.

 || binary Logical OR evaluate to 1 (true) if either left or right
operand is non-zero , 0 (false) otherwise.

, binary Sequential evaluation evaluates expression on left,
then expression on the right.

?:
[NOT IMPLEMENTED]

ternary The conditional expression evaluates the first operand
(before the ?), and if true (non-zero), evaluates second
operand (between ? and :), or if false evaluates the
third operand (after the :). For example:
 iVal = (4>5)?5:-10;
is equivalent to
 iVal = -10;

The following table gives the precedence order and association for the supported
GXC operators:

Symbol in order of
precedence

Type Association

[] () . Expression left to right

Postfix ++ and postfix -- Unary right to left

Prefix ++ and prefix -- Unary right to left

Part 1 - GX Developer Basics 15

sizeof + - ! Unary right to left

(int) (real) (class) unary cast right to left

* / % multiplication left to right

+ - additive left to right

< > <= >= relational left to right

== != equality left to right

&& logical AND left to right

|| logical OR left to right

?: conditional right to left

= *= /= %= += -= simple and compound
assignment

right to left

, sequential evaluation left to right

PUNCTUATION CHARACTERS

Punctuation characters are used to control how the compiler processed the source
code and evaluate expressions. The following table documents the punctuation
characters.

Characters Description

; The semicolon marks the end of an expression. One expression is always
completely evaluated before starting on the next expression.

{ } Braces mark the start and end of a group of expressions that are evaluated in
order. Braces are normally used to group statements that must be executes
within a control structure.

() Parentheses control the order of evaluation in arithmetic and logical expressions
such that everything inside parenthesis is evaluated before evaluating the next
associated operator outside parentheses.

UNSUPPORTED C-LANGUAGE OPERATORS AND TOKENS

As you can see from this summary of operators, GX Programming Language
provides almost full support of all C language operators. There are two sets of
standard operators that you will not find here — bitwise operators and address
operators.

Bitwise operators (<<, >>, &, |, ^ and ~) enable you to perform very low-level
manipulations at the bit level. Address operators (& and *) are for manipulating the
addresses of variables and for working with pointers, respectively.

Since GX programming does not require low-level functions, addresses or pointers,
they are not included in the language. String literals (tokens) are also not supported.
Instead we provide a class of library functions (STR) that you can use for working
with text.

16 Part 1 - GX Developer Basics

DEFINING CONSTANT EXPRESSIONS

Typically, you use constant expressions for both control flow (i.e. incrementing
counters) and computational purposes. The format consists of a left-hand expression
(variable) of a certain type, an assignment operator (=) and a constant of the matching
type. Examples are:
iConstant = 1;
rConstant = 2.27052;

The system evaluates constants at compile time so that you will know immediately
whether they are correct.

DEFINING AND USING MATH EXPRESSIONS

A powerful capability in Oasis montaj is to apply some mathematical operation to
selected rows in one or more channels of data, such as in the following expression:

Z = 2.5*sqrt(X*X + Y*Y)

where X, Y and Z are the names of channels.

The GX Programming Language provides this same functionality with the math
expression object EXP. To define the above math expression within a GX you could
type:
ZExp=Create_EXP(Data,“Z=2.5*sqrt(X*X + Y*Y);”,64);

Note the semicolon “;” terminating the expression. The number 64 represents the
maximum length of the expression string. A call to the Math_DU function is used to
apply the expression to a given line:
Math_DU(Data,Line,ZExp);

In many cases, however, channel and variable values may not be known ahead of
time to the programmer, but instead are determined at run-time, perhaps by being
selected by the user. In this case, the expression may be defined using replaceable
parameters, indicated by pre-pending dollar-sign characters “$” to the local variable
names:
GetString_SYS(“MYGX”, “X_CHAN”, sXCh);
GetString_SYS(“MYGX”, “Y_CHAN”, sYCh);
GetString_SYS(“MYGX”, “Z_CHAN”, sZCh);
rMult = 2.5;

ZExp = Create_EXP(Data,"$sZCh=
 $rMult*sqrt($sXCh*$sXCh+$sYCh*$sYCh));",350);

The 350 value at the end of the expression, giving the maximum expression length in
characters, recognises the fact that individual channel names may each contain up to
64 characters (defined by DB_SYMB_NAME_SIZE in db.gxh) characters. (See the
EXP.GXH header file for details).

Part 1 - GX Developer Basics 17

Math expressions may also be applied to grids. The expression syntax is identical,
and the procedure is similar, but it uses the IEXP object. (See the IEXP.GXH header
file for details).

CASTING TYPES

Arithmetic operations in GX Developer must remain true to type. Integer and real
types can be mixed only if type casting is performed. The (real) and
(int)operators are cast operators that convert the operand on the right to the
specified type. Other programming languages (including C) will perform casting
automatically, but this is a common source of programming errors. GXC requires that
the GX programmer make all type casts explicit.

For example, the following operations will produce an error on compilation:
iVal = 10.0; // should be: iVal = 10;
rVal = 0; // should be: rVal = 0.0;
iVal = rVal + 1; // should be: iVal = (int)rVal + 1;
rVal = iVal/rVal; // should be: rVal = (real)iVal/rVal;

Class handles and symbols can also be stored in an integer variable, which can be
useful in some applications. However, to store the handle in an integer variable
requires that the class be cast to an integer. When the class handle is used, it must be
cast back to the type of the class. The following example illustrates this:
DB hDB; // working database
int(10) iDB; // array of 10 database handles
int i;
string(GS_MAX_PATH) sName;
{
 for (i=0;i<10;i++) {

 // --- code to get databases ---
 ...
 iDB[i] = (int)hDB;
 }

 // --- get the name of the 5’th database ---

 GetName_DB((DB)iDB[4],DB_NAME_FILE,sName);

 ...
}

Statements
The statements of a GXC program control the flow of program execution. In GXC, as
in other programming languages, several kinds of statements are available to perform
loops, to select other statements to be executed, and to transfer control. This section
describes the following GXC statements in alphabetical order:

Statement Description

break breaks control out of a do, while, for or switch statement

18 Part 1 - GX Developer Basics

compound statement sequence of statements enclosed in braces

continue go immediately to the next iteration of a loop

do-while repeat while a condition is true

expression statement A single expression

for loop a specified number of times

if controls conditional branching

switch transfer control based on a complex condition

while while a condition is true, process a statement

THE BREAK STATEMENT

The break statement terminates the execution of the nearest enclosing do, for,
switch or while statement in which it appears. For example:
switch (iTest)
{
 case 0:
 rX = rX + 0.25;
 break:
 case 1:
 rY = rY + 0.25;
 break;
 case 2:
 break; // Does not increment rX or rY when iTest =
2
 default:
}

for (i=0;i<1000;i++) {
 if (rData[i] == rDUMMY) break;
 rData[i] = 0.0;
}

In a switch statement, break is commonly used as the last statement in each case
block to prevent program flow moving into the next case block. In a do, for, or
while loop, the break statement can be used to terminate the loop prematurely.

COMPOUND STATEMENTS

A compound statement (also called a “block”) typically appears as the body of
another statement, such as the if statement. Compound statements are a sequence of
statements enclosed by braces ({ }). An example is:
if (Tb != NULLTB) {
 ProgName_SYS("Load levels",1);
 LockSymb_DB(Data,Level,DB_LOCK_READWRITE,DB_WAIT_INFINITY);
 TableLineFid_DU(Data,Level,Ref,LTBL,Tb);
 UnLockSymb_DB(Data,Level);
}

Note: Unlike C, you cannot declare new variables within a compound statement.

Part 1 - GX Developer Basics 19

THE CONTINUE STATEMENT

The continue statement passes control to the next iteration of the nearest enclosing
do, for or while statement, bypassing any remaining statements in the do, for or
while statement body.

Within a do, or while statement, the next iteration starts by re-evaluating the
expression of the do or while statement.

A continue statement in a for statement causes the last expression of the for
statement to be evaluated, then the conditional statement is evaluated. Depending on
the result, the statement body is iterated or the loop terminates.

Following is an example of a continue statement:
for (i=0;i<1000;i++) {
 if (rData[i] == rDUMMY) continue;
 rData[i] = 0.0;
}

This example will set all non-dummy values in the rData array to 0.

THE DO-WHILE STATEMENT

The do-while statement lets you repeat a statement or compound statement until a
specified expression becomes false. The statement or compound statement is always
executed at least once. For example:

i = 0;
do {
 rY = rData[i];
 i++;
} while ((i < iLength) && (rY != rDummy));

THE FOR STATEMENT

The for statement has the following form:

for (init-expression; cond-expression; loop-expression) statement

Execution of a for statement proceeds as follows:

1. The init-expression, if any, is evaluated. This is normally used to establish the
initial values for the variables used to control the loop.

2. The cond-expression, if any, is evaluated. If the expression evaluates to true (any
non-zero value) the statement body is executed.

3. After each iteration of the statement body, the loop-expression is evaluated, then
the cond-expression is evaluated. If the cond-expression is still true, the statement
body is repeated. This process continues until the cond-expression evaluates to be
false (0).

The most typical usage of a for loop is to repeat a statement body a fixed number of
times as in the following example:

20 Part 1 - GX Developer Basics

rXvalue = 2.5;
iNth = 5;
for (iPower=0; iPower < iNth; iPower++)
 rXvalue *= rXvalue;

In this example, the program calculates the Nth power (in this case N = 5) of a
predefined rXvalue.

EXPRESSION STATEMENTS

An expression statement is a single statement that is evaluated according to the
operator rules defined in the Operators section of this manual. Expression statements
always end with a ‘;’. Below are examples of expression statements:

rX = 4.5; // simple assignment
rD = rSqrt(rX*rX + rY*rY); // function call returns a real value
rX = rY = 0.0; // 0.0 is assigned to both rX and rY

THE IF STATEMENT

The if statement tests a condition and if true (non-zero) executes the if statement
body, or if false, and an else clause exists, executes the else statement body.
Following are examples:
if (rData == rDUMMY)
 rX = rDUMMY;

if (rData == 0.0) {
 rY = 0.0;
 rX = rDummy;
} else {
 rY = rDUMMY;
 rX = 0.0;
}

When nesting if statements and else clauses, the compiler will associate an else
statement with the most recent if statement that lacks an else. However, this can
easily lead to errors in your code and we recommend that you use braces to clearly
identify the associations of if and else statements.

THE SWITCH STATEMENT

The switch statement helps control complex conditional and branching operations.
The switch statement defines a branching structure for testing integer values and
performing certain actions depending on the integer value that is retrieved. An
example is:

switch (iTest)
{
 case 0:
 rXvalue = rXvalue + .25 ;
 break:

Part 1 - GX Developer Basics 21

 case 1:
 rYvalue = rYvalue + .25;
 break;
 case 2:
 break; // Does not increment x or y when iTest = 2

 default: // control will come here if no cases match the iTest
}

The switch causes program control to move to the case line that has the same
value as iTest. Note that once control has advanced to the appropriate case, each
statement will be processed in order, including advancing into the next case or
default section. The break statement is commonly used to limit execution to the
statements within one case.

THE WHILE STATEMENT

The while statement lets you repeat a statement or compound statement until a
specified expression becomes false (zero). For example:

i = 0;
while ((i < iLength) && (rData[i] != rDummy)) {
 rY = rData[i];
 i++;
}

Calling Functions
Most of the actual processing work in a GX is carried out by calling GX API
functions, or perhaps functions from one of your own DLL libraries. All GX API
functions are defined in GXH files contained in the GxDev/gxh directory. The
documentation for these functions is found in the GxDev/hlp/GxDeveloper.chm as
well as online at http://www.geosoft.com/support/devtools/

In GXC, functions either return a value or are “void”, which means they do not return
a value. Functions that return a value can be used in statements anywhere that the
value type can be used. Functions that do not return a value can only be used as
statements. Functions that return a value can also be used as statements, in which case
the return value is simply not used.

The following example illustrates use of functions in the RA class (see
GxDev/gxh/ra.gxh), which lets you read ASCII files:

http://www.geosoft.com/support/devtools/�

22 Part 1 - GX Developer Basics

RA hRA;
string(128) sLine;
int i,iLines;
{
 hRA = Create_RA(“test.txt”); // create handle to the file “test.txt”
 iLines = iLen_RA(hRA); // get the number of lines in the file
 for (i=0;i<iLines;i++) { // go through every line
 iGets_RA(hRA,sLine); // read the next line, ignore return value
 DisplayMessage_SYS(“test.txt”,sLine); // display the line
 }
 Destroy_RA(hRA); // destroy the handle to the file
}

Please refer to the section Working with Library Functions for more information
about using the GX API functions.

Preprocessor Directives
Pre-processor directives, such as #define and #include, are processed in the
first stage of compiling a GXC program. All directives are replaced by the result of
acting on the directive. For example, the pre-processor can replace tokens in the text,
insert the contents of other files into the source file, or suppress compilation of part of
the file by removing sections of text. Pre-processor lines are recognised and carried
out before macro expansion. Therefore, if a macro expands into something that looks
like a pre-processor command, that command is not recognised by the pre-processor.

The GXC pre-processor recognises the following directives:

#define #undef #elif

#if #include #else

#ifdef #endif #ifndef

The number sign (#) must be the first character on the line containing the directive;
white-space characters can appear between the number sign and the first letter of the
directive. Some directives include arguments or values. Any text that follows a
directive (except an argument or value that is part of the directive) must be enclosed
in comment delimiters (/* */) (single-line comment delimiters (//) are not supported
on directive lines). Lines containing pre-processor directives can be continued by
immediately preceding the end-of-line marker with a backslash (\).

Pre-processor directives can appear anywhere in a source file, but they apply only to
the remainder of the source file.

#DEFINE

You can use the #define directive to give a meaningful name to a constant in your
program. The two forms of the syntax are:

#define identifier token-string

#define identifier[(identifier, ... , identifier)] token-string

The #define directive substitutes token-string for all subsequent occurrences of an
identifier in the source file. The identifier is replaced only when it forms a token. (See

Part 1 - GX Developer Basics 23

Tokens.) For instance, identifier is not replaced if it appears in a comment, within a
string, or as part of a longer identifier.

A #define without a token-string removes occurrences of identifier from the source
file. The identifier remains defined and can be tested using the #ifdef directive.

The token-string argument consists of a series of tokens, such as keywords, constants,
or complete statements. One or more white-space characters must separate the token-
string from the identifier. This white space is not considered part of the substituted
text, nor is any white space following the last token of the text.

Formal parameter names appear in token-string to mark the places where actual
values are substituted. Each parameter name can appear more than once in token-
string, and the names can appear in any order. The number of arguments in the call
must match the number of parameters in the macro definition. Liberal use of
parentheses ensures that complicated actual arguments are interpreted correctly.

The second syntax form allows the creation of function-like macros. This form
accepts an optional list of parameters that must appear in parentheses. References to
the identifier after the original definition replace each occurrence of identifier (
identifier, ..., identifier) with a version of the token-string argument that has actual
arguments substituted for formal parameters.

The formal parameters in the list are separated by commas. Each name in the list must
be unique, and the list must be enclosed in parentheses. No spaces can separate
identifier and the opening parenthesis. Use line concatenation — place a backslash (\)
before the newline character — for long directives on multiple source lines. The
scope of a formal parameter name extends to the new line that ends token-string.

When a macro has been defined in the second syntax form, subsequent textual
instances followed by an argument list constitute a macro call. The actual arguments
following an instance of identifier in the source file are matched to the corresponding
formal parameters in the macro definition.

This example illustrates the #define directive:

#define WIDTH 80
#define LENGTH (WIDTH + 10)

The first statement defines the identifier WIDTH as the integer constant 80 and
defines LENGTH in terms of WIDTH and the integer constant 10. Each occurrence
of LENGTH is replaced by (WIDTH + 10). In turn, each occurrence of WIDTH + 10
is replaced by the expression (80 + 10). The parentheses around WIDTH + 10 are
important because they control the interpretation in statements such as the following:

iVar = LENGTH * 20;

After the pre-processing stage the statement becomes:

iVar = (80 + 10) * 20;

24 Part 1 - GX Developer Basics

which evaluates to 1800. Without parentheses, the result is:

iVar = 80 + 10 * 20;

which evaluates to 280.

The following example of macros with arguments illustrate the second form of the
#define syntax:
// Macros to return minimum and maximum values
#define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b))

Arguments with side effects sometimes cause macros to produce unexpected results.
A given formal parameter may appear more than once in token-string (as in the
previous example). If that formal parameter is replaced by an expression with side
effects, the expression, with its side effects, may be evaluated more than once.

The #undef directive causes an identifier’s pre-processor definition to be forgotten.

If the name of the macro being defined occurs in token-string (even as a result of
another macro expansion), it is not expanded.

#UNDEF

As its name implies, the #undef directive removes (undefines) a name previously
created with #define.

#undef identifier

The #undef directive removes the current definition of identifier. Consequently, the
pre-processor ignores subsequent occurrences of identifier. To remove a macro
definition using #undef, give only the macro identifier; do not give a parameter list.

You can also apply the #undef directive to an identifier that has no previous
definition. This ensures that the identifier is undefined. Macro replacement is not
performed within #undef statements.

#IF, #ELIF, #ELSE, AND #ENDIF

The #if directive, with the #elif, #else, and #endif directives, controls
compilation of portions of a source file. If the expression you write (after the #if)
has a nonzero value, the line group immediately following the #if directive is
retained in the translation unit. The following summarises the syntax of these
directives:

#if constant-expression
#ifdef identifier
#ifndef identifier

if parts…

#elif constant-expression

Part 1 - GX Developer Basics 25

else-if parts …

#else
else parts :

#endif
Each #if directive in a source file must be matched by a closing #endif directive. Any
number of #elif directives can appear between the #if and #endif directives, but at
most one #else directive is allowed. The #else directive, if present, must be the last
directive before #endif.

The #if, #elif, #else, and #endif directives can nest in the text portions of other #if
directives. Each nested #else, #elif, or #endif directive belongs to the closest
preceding #if directive.

All conditional compilation directives, such as #if and #ifdef, must be matched with
closing #endif directives prior to the end of file; otherwise, an error message is
generated. When conditional-compilation directives are contained in include files,
they must satisfy the same conditions: There must be no unmatched conditional-
compilation directives at the end of the include file.

#INCLUDE

The #include directive tells the pre-processor to treat the contents of a specified file
as if those contents had appeared in the source program at the point where the
directive appears. You can organise constant and macro definitions into include files
and then use #include directives to add these definitions to any source file. Include
files are also useful for incorporating declarations of external variables and complex
data types. You only need to define and name the types once in an include file created
for that purpose.

#include "path-spec"

The path-spec is a filename optionally preceded by a directory specification. The
filename must name an existing file. The syntax of the path-spec depends on the
operating system on which the program is compiled.

GRC Resources and Dialogs
GX Developer Resources are the visual elements of a GX — specifically, user-
interface dialog windows. If your GX will present a dialog to the user to obtain
information from the user, you will use a resource to define the dialog.

A Geosoft Resource file contains dialog resources and resource components. The
Geosoft Resource Compiler (GRC) must compile a Resource file to produce a
Geosoft Resource (GR) file and a Geosoft Resource Header (GRH) file. The resource
file and file header must be included in the corresponding GXC source code file
(using the #include Pre-processor directive) before declaring any variables.

You can work with any of the following resource types:

• FORM (dialog box containing edit fields and buttons).

26 Part 1 - GX Developer Basics

• LIST (dropdown list containing item components)
• HELP (help text)
The FORM resource can contain edit fields and buttons that may be linked to LIST or
HELP resources:
• EDIT simple edit field
• FEDIT file/browse field
• LEDIT list selection field
• CEDIT colour selection field
• EBUT exit button
• HBUT help button

This section describes each resource and component type and summarises the syntax
for using them. A GRC component has the following basic syntax:

keyword,parameter,parameter,...

When you are referring to syntax descriptions or tables, remember that all items in
{braces} are optional. The compiler ignores blank lines and lines that begin with “//”
characters.

For example, following is a resource file that defines a simple dialog:
//
// DIFF.GRC
//---
RESOURCE,FORM,DiffForm,"Calculate differences",-1
LEDIT,,,16,"Channel to difference",R,FORCE,,CHAN
LEDIT,,,16,"Output difference channel",R,,,CHAN
EDIT,,,16,"Number of differences (>=1)",R,INT
LEDIT,,,16,"Normalize differences?",R,FORCE,no,NORM
EBUT,&OK,0
EBUT,&Cancel,1,CANCEL
HBUT,&Help,help

RESOURCE,LIST,CHAN

RESOURCE,LIST,NORM
ITEM,"No"
ITEM,"Yes"

RESOURCE,HELP,help,diff.rtf

The FORM Resource
A FORM is a dialog box that prompts you for information or displays information. In
montaj, you see forms when you select a menu option followed by ellipses (...) or
when you run a GX that requires interactive parameter entry. Form elements include a
title bar, entry fields for text, numbers, lists of files, and push buttons.

When a dialog box is displayed, you can either type any required and optional
information, and press a button or press <Esc> to close the box without making

Part 1 - GX Developer Basics 27

changes. Many forms will include a <Cancel> button, which is equivalent to pressing
<Esc>.

SYNTAX
RESOURCE, FORM, resource_name, “title”, esc_val

PARAMETERS

The following table describes the parameters, purpose and/or values you can specify
for this resource.

Parameter Purpose and/or Allowed Values

resource_name Identifies an individual resource. You must use a unique name for each
resource in a GX.

Title The text that you want to display at the top of the dialog (dialog banner).
The title of a dialog can be changed from a GX using the SetTitle_DGW
function as follows:

SetTitle_DGW(hDGW,”My new title”);

esc_val Specifies the number that is returned if the user presses <Esc>. If this

occurs, no validation is done (entered values are not stored or evaluated).
This value should normally be set to –1, or the same as used for a [Cancel]
button.

EXAMPLES
RESOURCE,FORM,SAMPLE,"Sample GX Dialog Title",-1

The above example defines a dialog with the resource name “SAMPLE”. In your GX
source code, it would be referenced as follows:

// --- Create the Dialogue ---

hDGW = Create_DGW("SAMPLE");

In this sample, hDGW has been declared to be a DGW class instance.

Resources have identifiers that are defined in the “.grh” header file produced when
the resource is compiled. This file is included using the #include “filename.gxh”
command.

FORM Components
A FORM resource will have one or more field and button components:

• Text entry fields (EDIT)
• File name and path entry fields (FEDIT)
• Static and dynamic lists (LEDIT)
• Colour selection tool (CEDIT)
• Pushbuttons (EBUT)

28 Part 1 - GX Developer Basics

• Help pushbuttons (HELP)

Field and list resource components will appear on the dialog box in the order that you
specify them, meaning that you can control their vertical positioning. Buttons appear
at the bottom of the dialog, and are positioned horizontally left to right in the order
specified.

FORM COMPONENTS — SYNTAX

The following shows the syntax for the each FORM components. Although they
appear together, you can use them independently.
EDIT,,,width,{&}label,{required},{validation},{default_value}
FEDIT,,,width,{&}label,{required},{validation},{default_value}, {file_path},{file_mask}
LEDIT,,,width,{&}label,{required},{validation},{default_value}, list_resource
CEDIT,,,width,{&}label,{required},{default_value}
EBUT, {&}label{~},ret_val,{cancel}
HBUT, {&}label,help_resource

PARAMETERS

The following table describes the parameters, purpose and/or values you can specify
for the various FORM resource components. The second and third parameters in the
EDIT, FEDIT and LEDIT components are no longer used, but their positions, marked
by commas without values, must be retained. (You may also refer to etc/grc.doc for
more current information.)

Parameter Purpose and/or Allowed Values

Width Defines the width of an edit field in characters. The maximum width will depend
on your system display limitations. It is a good idea to make all edit fields in a GX
the same width because this improves the appearance of the dialog.

Label Identifies the label associated with this object. The label is displayed on the left of
edit fields, and as the text in a button.
Labels can be changed from a GX by calling the SetInto_DGW as in the following
example:

SetInfo_DGW(hDGW,_MYFORM_0,DGW_LABEL,”My new label”);

The & character placed before a character of the label in a button will make that
character the “hot” button that lets your user activate the button by pressing <Ctrl-
character>
Placing a ~ (tilde) character after a button label will make this button the default
action when the user presses <return> or <enter>

Required R if a user entry is required; N for a non-editable entry (appears in a gray
background); blank for optional user entry.

Validation Indicates the type of values, files or user selections you want to allow for the
component. One of the following:
INT – (EDIT) integer value
REAL- (EDIT) real value
PASSWORD – allows entry of a password in which user keystrokes are displayed

Part 1 - GX Developer Basics 29

as a ‘*’ character.
N – (EDIT) indicates read-only. Text appears in a grayed window
NEW – (FEDIT) file does not yet exist and the user will be prompted to confirm.
OLD – (FEDIT) the file must already exist
FORCE – (LEDIT) forces user to select one of the items in the list

default_value Default value to place in the field if the GX has not specifically set a value.
You can also use a default value defined in geosoft.ini by specifying
%group.parameter%”. For example, “%MONTAJ.DEFAULT_COLOUR%” will
place the default colour table in a field by default. (This if for colour file selection
only, and not for use in the CEDIT (colour selection) tool .)
Note that the SetInfo_DGW and SetInfoSYS_DGW methods will change the
value in a dialog field.

file_path Indicates the default path from which to create a file list. Use a tilde (~) to indicate
the Geosoft directory. Multiple items may be specified, separated by commas.

file_mask Defines the file name mask (default is *.*).
"/" to look for directories only.

”**” to allow multiple file selection (see note below)
"*.grd" displays all data and image DAT types that are available.
"*.GRDDAT" limits the list to data grid DATs.
"*.IMGDAT" limits the list to image DATs.
Multiple masks can be specified by separating each mask by a semicolon.
To select multiple files of a specific type, make the first mask “**” followed by a
semicolon and the mask for the file type wanted. For example “**;*.grd” allows
the user to select multiple grid files.
Extensions can be changed from a GX by calling the SetInto_DGW as in the
following example:
SetInfo_DGW(hDGW,_MYFORM_0,DGW_EXT,”My new extension”);

list_resource The name of the LIST resource for an LEDIT component. A LIST resource that
matches this name must be defined in the same resource file.

ret_val The value that is returned when a button is pressed.

cancel If the word "cancel" is specified, this button is treated as a cancel button and no
validation of the dialog box is performed. Pressing a cancel button is equivalent to
pressing the <Esc> key.

Help_resource Defines the name of the HELP Resource to display when a help button is selected.

EXAMPLES

There are two types of FEDIT components: those that create lists of already existing
files, and those that are to specify new files. The type is specified using the OLD or
NEW validation string. If NEW is specified, and the file already exists, the validation
ensures that the user is prompted to verify whether the file is to be overwritten:

FEDIT,,,40,"Create a New File" ,R,NEW,,,*.dat
FEDIT,,,40,"Symbol Font Name",R,OLD,symbols,~,*.gfn
FEDIT,,,30,"Grid name",R,OLD,,,*.grd

30 Part 1 - GX Developer Basics

In the second example, files of type “.gfn” in the user’s Geosoft directory will be
displayed, and the symbols.gfn file will be selected by default, if no previous font file
has been selected in this field.

In the third example, the presence of the “*.grd” alerts the resource compiler to the
fact that grid files are requested, and the special grid file browser is invoked when the
“...” browse button is selected beside this field. This grid browser automatically
appends to the grid name the file decorations specific to the chosen grid type required
to correctly interpret the grid.

The EDIT components may be used in four basic ways: to handle strings, integers and
real values, and to display a text label in a shaded window as a read-only field:

EDIT ,,,30,"A Real value",,REAL
EDIT ,,,30,"An Int value",R,INT,10
EDIT ,,,30,"A String value",R
EDIT ,,,30,"Channel Name",N

In the first example, no input is required, but if it is, it must be a valid floating-point
number. In the second example, an integer value is required, and 10 will be offered as
default if no value is passed into the GX for this field. The third example requires the
user to enter any string value. The fourth example is for printing out a channel name
(for example); the user cannot change this value; the programmer determines it in the
source code.

The CEDIT components are used to specify colours for coloured entities such as
symbols, symbol fills, and lines. In the dialog, the edit window will be painted with
the currently selected colour, and when the user clicks on the window the colour
selection tool comes up so the user can select a different colour. The following are
examples of the use of the CEDIT component:
CEDIT ,,,30,"Line colour","K"
CEDIT ,,,30,"Line colour #2","R128"
CEDIT ,,,30,"Line colour"

The last (optional) field is the default colour string. Colour strings take the form
“R#G#B#, where # is a value from 0 to 255, giving the intensity of the Red, Green or
Blue colour. Black can be expressed in a number of ways, including “K”, “R0” or
“R0G0B0”. (Colours not included are assumed to be at zero intensity.) Letters given
without numeric qualifiers are assumed to be at full intensity; for instance white can
be written as “R255G255B255” or “RGB”.The default colour (third example above)
is black “K”. In addition, you can use “N” (None) to indicate no colour, which is the
same as transparent –for instance for fill colours in symbols – as well as “C” (Cyan),
“Y” (Yellow), and “M” (Magenta).

For an example showing use of the LEDIT component, see the LIST Components –
EXAMPLES section below.

Part 1 - GX Developer Basics 31

The LIST Resource
A LIST resource is a drop-down box containing a group of selectable parameters,
such as channel names. The contents of the list can be defined as part of the list
resource in the Resource file, or they can be defined at run time using the
GetList_DGW method to the get the LIST object (see example below).

 If there is a list available for the selected field, you see a drop down list box
containing items with a down arrow to the left of the box.

When you select an item, it replaces any existing text in the field.

SYNTAX

RESOURCE, LIST, resource_name

PARAMETERS

The following table describes the parameters, purpose and/or values you can specify
for the LIST resource.

Parameter Purpose and/or Allowed Values

resource_name Identifies an individual resource. You must use a unique name for each
resource in a GX.

List Components — Description
Individual items in the dropdown LIST resource are specified using the ITEM
statement. The items appear immediately following the LIST resource, one item per
line.

SYNTAX

ITEM,item_name{,alias}

PARAMETERS

The following table describes the parameters, purpose and/or values you can specify
for the ITEM resource component.

Parameter Purpose and/or Allowed Values

item_name Identifies the list item displayed to the user.
alias Indicates the corresponding alias value actually passed back and forth

from the dialog. If no alias is defined, the item_name is used.

EXAMPLES

The following is an example of an LEDIT component, with a list whose items are
defined inside the resource file:

LEDIT,,,20,"Plot sizes?",R,FORCE,"Yes",YesNo
LEDIT,,,20,"Sizes",R,FORCE,"Large",SIZE

32 Part 1 - GX Developer Basics

RESOURCE,LIST,YesNo
ITEM, Yes,1
ITEM, No,0

RESOURCE,LIST,SIZE
ITEM, Small
ITEM, Medium
ITEM, Large

The “R” parameter ensures that the user must enter a result in the field, and the
“FORCE” parameter ensures that the entered text is one of the menu items.

The following is a commonly found example of an LEDIT component where the
resource items are not defined in the resource file:

LEDIT,,,20,"Channel",,FORCE,,CHAN

RESOURCE,LIST,CHAN

This creates an empty list resource that will be populated by the GX at run-time. In
this example, the CHAN resource will be populated by a list of channels in the
current database using GX code similar to the following:

// --- Set up lists ---

List = GetList_DGW(hDGW,_MYFORM_3); // retrieve list from dialog
SymbLST_DB(Data,List,DB_SYMB_CHAN); // fill the list from the database
Sort_LST(List,0,0); // sort the list alphabetically

In the above example, the “_MYFORM_3” parameter indicates that the LEDIT
component referenced is the fourth component (because indexing begins at 0) in the
FORM resource whose resource_name is “MYFORM”.

The HELP Resource
Help resources are used to provide the user with context sensitive help about how to
use your GX, or specifically how to use the dialog that is displayed. The HBUT
button on a FORM (Dialog) resource requires a HELP resource. The HELP resource
is displayed when the user presses the [Help] button.

Help information itself can be provided as a simple text file, an RTF (Rich Text
Format) file, or you can use a WinHelp or Compile HTML help system.

SYNTAX

RESOURCE, HELP, resource_name, help_file_name

Part 1 - GX Developer Basics 33

PARAMETERS

Parameter Purpose and/or Allowed Values

Resource_name The help resource name that is used in the HBUT control on the FORM
resource.

Help_file_name Identifies the ASCII or RTF (Rich Text Format) file to be used as a help
resource. This text is merged into the GX.
You can also create a WinHelp or Compile HTML help file for your GXs
that will use the Windows Help system to display your help. See the next
section for more information on using WinHelp or Compile HTML Help.

EXAMPLES

The following are examples showing the use of an ASCII text help file, and an RTF
file:

RESOURCE,FORM,Dialog,”My dialog has 2 help buttons”,-1
HBUT,”Help me”,help1
HBUT,”More help”,help2

RESOURCE,HELP,help1,simple_help.txt
RESOURCE,HELP,help2,more_help.rtf

Using WinHelp or Compile HTML (*.CHM) Help Files
You can also use a WinHelp (*.HLP) or Compile HTML (*.CHM) help system files
to provide help information to any GX you create. The following section outlines the
steps you need to follow to do link a WinHelp/Compile HTML help system to a GX.

Linking WinHelp or Compile HTML help to Oasis montaj GXs
This tutorial uses a number of sample files that are installed with your GX Developer
installation. The following files will be copied to a gx\examples\winhelp
subdirectory located within your GX Developer directory:

myhelp.ini This INI file is used to map the GX Topic ID to the help file.

myhelpgx.gx This is a sample GX with a dialog box containing two help
buttons.

myhelpgx.grc This is the grc file for the sample GX myhelpgx.gx

myhelpgx.gxc This is the gxc file for the sample GX myhelpgx.gx

myhelpfile.hlp This is a sample WinHelp file with only two help topics, one
for each help button on the GX dialog.

brokenlink.hlp This help file is displayed if the link is broken.

34 Part 1 - GX Developer Basics

Step 1 – The GRC File
The .grc file contains the help resource information for the GX. In this example, the
GX has a dialog box that contains two help buttons.
//
// MyHelpGx.GRC
//--

RESOURCE,FORM,MyHelpForm,"GX to test Winhelp Topics",-1
EDIT,,,16,"Bogus Edit Box",,
EBUT,&OK,0
EBUT,&Cancel,1,CANCEL
HBUT,&HelpTopic1,MyHelpTopicLink1
HBUT,&HelpTopic2,MyHelpTopicLink2

RESOURCE,LIST,CHAN

RESOURCE,HELP,MyHelpTopicLink1,BrokenLink.hlp
RESOURCE,HELP,MyHelpTopicLink2,BrokenLink.hlp

PARTS OF THE GRC FILE

The help buttons are defined in the HBUT lines:
HBUT,&HelpTopic1,MyHelpTopicLink1
HBUT,&HelpTopic2, MyHelpTopicLink2

The &HelpTopic2 text is the title text on the help button.

The MyHelpTopicLink2 text is a link ID (or help resource). This ID is used in the
myhelp.ini file to link to the real help Topic ID in the myhelp.hlp file (this is
explained more in the next step).

BROKEN LINKS

The RESOURCE lines specify a file that is displayed if a user clicks on the help
button and the link to your Winhelp topic is broken for any reason.

In this example, a broken link would display the brokenlink.hlp file. You can also
specify a text file (brokenlink.txt) or an RTF file (brokenlink.rtf).

You should compose a message that tells your users what to do should when they find
a broken link (contact you, for example). You can place this file in the gx\include
directory so it can be shared by all your GXs. Geosoft uses a file named “nogx.hlp”
exactly for this purpose (please do not use this file since it asks your users to contact
Geosoft).

Step 2 – The myhelp.ini file (Mapping File)
The next step is to create a mapping file that Oasis montaj will use to link the link
ID to a Topic ID in a specific WinHelp (*.hlp) or Compile HTML Help (*.chm) file.

In this example, we created a mapping file called myhelp.ini that contains the
following text:

Part 1 - GX Developer Basics 35

[GXHELP]
MyHelpTopicLink1="MyHelpFile.hlp:MyHelpTopic1"
MyHelpTopicLink2="MyHelpFile.chm:MyHelpTopic2.htm"

WHAT EACH LINE MEANS:

The first line in the file [GXHELP] identifies that this is a mapping file used to
provide GX help.

The following two lines consist of three parts, illustrating WinHelp (*.hlp) and
Compile HTML Help (*.chm) files.

WinHelp Example
MyHelpTopicLink1="MyHelpFile.hlp:MyHelpTopic1"

The (blue) text MyHelpTopicLink1 is the Link ID for the first button as indicated
in the myhelp.grc file.

The (red) text MyHelpFile.hlp or indicates the WinHelp file to look in for this
information.

The (green) text MyHelpTopic1 is the Topic ID associated with the topic text in
the WinHelp file.

Compile Help (*.chm) Example
MyHelpTopicLink2="MyHelpFile.chm:MyHelpTopic2.htm"

The (blue) text MyHelpTopicLink2 is the Link ID for the first button as indicated
in the myhelp.grc file.

The (red) text MyHelpFile.chm or indicates the Compiled Help file to look in for
this information.

The (green) text MyHelpTopic2.htm is the HTM file associated with the topic
text in the Compile Help file. To determine the individual HTML files contained
within a Compile Help file, use the following command:
hh.exe –decompile extracted GridAnalysisHelp.chm

WHAT ARE TOPIC IDS?

Each topic in a WinHelp file has a unique Topic ID. Topic ID names should not have
any spaces in them. A Topic ID is not the same as a Topic name. A Topic Name is
only the title text of the topic.

Tip: At Geosoft, to make things easier, we usually use a topic ID that is derived
from or similar to the name of the GX. For example, the ARROW GX topic in
the help system would have a topic ID called ARROW_GX.

Step 3 – Create a Custom Winhelp File
If you haven’t already done so, you will now need to create your custom WinHelp file
(Myhelp.hlp) using a help authoring software program (at Geosoft we use Robohelp).

36 Part 1 - GX Developer Basics

Add custom Help INI to Oasis montaj
Before you can use your custom GX help file, you will have to tell Oasis montaj to
use the custom .ini file you created. This will let Oasis montaj know which mapping
files to check for links.

Simply, your custom .ini file needs to be placed into the spec\ini subdirectory in an
Oasis montaj installation. This spec directory resides on the same level as bin, gx,
and hlp.

Any number of files can be placed into this directory. With this modification, Oasis
montaj will now search the spec\ini directory and load each file when it looks for a
help topic to link to.

Step 4 – Copy the Files and Restart Oasis montaj
If you are using Oasis montaj, you should copy any help files you create to the hlp
sub-directory, any INI files to the spec\ini sub-directory, and GXs to the gx sub-
directory where your Oasis montaj is installed.

Whenever you change an INI or HLP file that Oasis montaj uses, you need to restart
the software to have the changes take effect.

Final Note: The instructions in this note only apply to linking help from a GX. If
you want to link help file topics to custom GUI (graphic user interface)
objects or to dialogs created using visual basic, you will need to create
a .hh mapping file and link them using a different method.

Combining Resources and Components
The following example shows how you would combine various resources and
resource components to create a dialog box. To see how this dialog box appears on
the screen, try loading and running the XLEVEL GX file in Oasis montaj:

RESOURCE,FORM,XLEVELForm,"Make a level channel",-1
FEDIT,,,16,"Intersection table",R,OLD,,,*.TBL
EDIT ,,,16,"Maximum gradient (Z/fid)",,REAL,0.0
LEDIT,,,16,"Process line types",r,FORCE,Tie,TYPE
LEDIT,,,16,"Unlevelled data channel",R,FORCE,,CHAN
LEDIT,,,16,"Output cross-level channel",,,,CHAN
LEDIT,,,16,"Output difference channel",,,,CHAN
LEDIT,,,16,"Output cross-gradient channel",,,,CHAN
EBUT,&OK,0
EBUT,&Cancel,1,CANCEL
HBUT,&Help,help

RESOURCE,LIST,CHAN

RESOURCE,LIST,TYPE
ITEM,Tie
ITEM,Line
ITEM,Selected

RESOURCE,HELP,help,nogx.hlp

Part 1 - GX Developer Basics 37

Working with Menus
An Oasis montaj menu file (.omn or .smn file) defines a menu that can be added the
Oasis montaj menu bar. Menus organise suites of GXs and internal commands into
logical processing groups to be presented to your user. You will normally create a
menu specifically for your own application suite, and the first thing your user will do
is load your menu by clicking the Load menu option on the GX menu. The contents of
your menu will be inserted into the displayed menu immediately before the
“Window” menu.

Note that only menus with extension .omn will be displayed in the menu browse tool.
Menu files with extension .smn are for menus that will only be included in other
menus. A menu loads submenus using the LOADMENU directive followed by the
submenu name.

For example, following is the menu file for the gravity reduction system
(gravity.omn):

/
/ Gravity reduction system
/--

MENU "&Gravity"
ITEM "Pro&ject information..." ,grproj.gx
ITEM "&Processing parameters..." ,grparm.gx
SEPARATOR
SUBMENU "&Base stations"
SUBMENU "&Calibration"
SUBMENU "&Locations"
SEPARATOR
SUBMENU "&Import"
ITEM "&Drift correction..." ,grdrift.gx
ITEM "&Merge with master database...",grappend.gx
SEPARATOR
ITEM "Process &repeats..." ,grrepeat.gx
SUBMENU "&Terrain corrections"
ITEM "&Free air, Bouguer anomaly..." ,grboug.gx
SEPARATOR
ITEM "Edit file..." ,edit.gx
ITEM "Sort all by &1 channel..." ,sortall.gx
ITEM "Sort all by &2 channels..." ,sortall2.gx
ITEM "E&xpression..." ,math.gx
ITEM "Expressi&on file..." ,mathfile.gx

MENU "&GravRed/&Import"
ITEM "&Import gravity survey..." ,grload.gx
SEPARATOR
ITEM "&Edit data file..." ,edit.gx
ITEM "&Download from CG3..." ,grdnlcg3.gx
...

38 Part 1 - GX Developer Basics

Each line of a menu file is either a comment, a blank line, or a keyword followed by
parameters. The following table describes each of the supported keywords:

Keyword Parameters Description

CLEARALL None The CLEARALL keyword will clear all menus;
excluding the coremenus.omn This enables your menu
to completely control the Oasis montaj environment for
your specific application. The CLEARALL keyword, if
used, should be the first keyword in your menu file.
If you use this keyword, you should provide your user
with access the *ID_CLEARMENU internal command
somewhere in your menu system. This command will
allow your user to reset the menus to the Geosoft
coremenus.omn.

MENU Name This identifies a new menu, which can appear on the
Oasis montaj menu bar, or may be a submenu that will
become part of a previously defined menu. Each MENU
line is followed by one or more ITEM lines, SUBMENU
lines or SEPARATOR lines.
You can also specify the name of a pop-up menu that is
activated when the right-mouse button is pressed. Pop-
up menus are context sensitive, which means that the
menu that appears depends on the current mode and the
object that is under the mouse cursor at the time the
right-mouse button is pressed.

SUBMENU Name This identifies a menu entry that will be a sub-menu in
the menu list. There must be a MENU associated with
the submenu later in the OMN file, and the name in the
MENU must be “menu_name/sub_menu_name”. See
the above example. Submenus may also be nested.

SEPARATOR None Places a separator to space items in the menu list when
displayed.

LOADMENU File Load another menu file. If you need to share certain
menu components among applications, it is easier to
store the menus in a separate menu file that can be
included in other menu files. If a menu file is never
intended to be used by itself, you should give it
extension “.smn” to prevent the file from appearing in
the load menu browse tool.
All menu files are located in the <geosoft>\omn
directory by default. Menus that are not located in this
directory must be specified explicitly (see File Names
below).

LOCATE TOP
BOTTOM
AFTER "Name"
BEFORE
"Name"

Controls the location of the menu items that follow. The
AFTER and BEFORE require the name of a menu item
that already exists in the menu.

ITEM Name, Action An ITEM in a menu identifies an action that will happen

Part 1 - GX Developer Basics 39

<image.bmp[i]
>
{?context}

when your user selects the item.
Name is the text that appears in the menu.
Action can be the name of a GX, a GS script, a Sushi
PDF file, a Win-32 help file, or the name of an internal
command. GX, GS, PDF and help files must be in the
project directory or in the Geosoft directory, or the
locations must be specified explicitly (see File Names
below).
Internal commands must be one of the commands listed
in the Internal Command table below.
Action can also be a SHELL command that will execute
an operating system command. See the “SHELL item
action below for more information.
<image.bmp[i]> indicates this item will show an image
in the menu to the left of the item. The [i] indicates the
position of the specified icon or picture within the larger
bmp file.
{?context} is a context test that if not true will shade the
item Name in the menu. The following contexts are
supported:
{?map} a current map is open
{?gdb} a current database is open
{?map_or_gdb} a current map or database is open
{?map_and_gdb} a current map and database are

open

LOADTOOLBAR “Name.geobar” Loads a toolbar into the project. See “Working with
Toolbars” below.

SHELL item action
The item action SHELL will cause the “ShellExecute” function to be called with the
parameters of the SHELL command passed as the arguments to the ShellExecute
function. Syntax for the SHELL command is:

SHELL(Operation;”File”;”Parameters”;”Directory”;”ShowCmd”)

Only Operation and “File” are required.

The SHELL command is typically used to execute an external probram such as an
operating system program as in the following example:

ITEM “Stop IIS Server” , SHELL(open;”IISRESET.EXE”;”/stop”)

Operation can also be “winhelp”, in which case “File” will be a JumpID command as
in the following example:

ITEM “FAQ” , SHELL(winhelp,“JumpID(\“%geopath%\\interface.hlp\”,
 \”Frequently_Asked_Questions\”)”.

Refer to the ShellExecute Function description in MSDN for more information about
the ShellExecute command.

40 Part 1 - GX Developer Basics

Working with Toolbars
An Oasis montaj toolbar file (.geobar file) defines a single toolbar that can be added
to any Oasis montaj project. Toolbars organise suites of GXs and internal commands
into logical processing groups to be presented to your user. You will normally create
a toolbar specifically for your own application suite, and the first thing your user will
do is load your toolbar by right-clicking the Toolbars section of the project explorer
and selecting Add toolbar(s)…. The user can then browse to the bar directory and
load your toolbar. The bar will be loaded and displayed in default fashion and added
to the list in the project explorer.

Note that each toolbar needs to have its own .geobar file.

For example, following is the toolbar file for a small toolbar installed with Oasis
montaj Viewer:
TOOLBAR "Standard Bar"
ITEM "Open database...", *ID_FILE_OPEN_DATA <standard.bmp[2]>
ITEM "&Open map...", *ID_FILE_OPEN_MAP <standard.bmp[5]>
SEPARATOR
ITEM "Run &GX...", gxrun.gx <standard.bmp[13]>
ITEM "&Load menu...", *ID_VIEW_LOADMENU <standard.bmp[14]>

Each line of a toolbar file is either a comment, a blank line, or a keyword followed by
parameters. The following table describes each of the supported keywords for toolbar
files:

Keyword Parameters Description

TOOLBAR Name This identifies a new toolbar, which can appear on the
Oasis montaj project explorer. Each TOOLBAR line is
followed by one or more ITEM lines or SEPARATOR
lines.
Only one toolbar should be specified per .geobar file.

ITEM Name, Action
<image.bmp[i]>
{?context}

An ITEM in a toolbar identifies an action that will happen
when your user selects this button on the bar.
Name is the text that appears in the tooltip when the user
hovers over the button for a couple of seconds.
Action can be the name of a GX, a GS script, a Sushi PDF
file, a Win-32 help file, or the name of an internal
command. GX, GS, PDF and help files must be in the
project directory or in the Geosoft directory, or the
locations must be specified explicitly (see File Names
below).
Internal commands must be one of the commands listed in
the Internal Command table below.
Action can also be a SHELL command that will execute an
operating system command. See the SHELL command
description for more information.
<image.bmp[i]> indicates this button will show an image.
The [i] indicates the position of the specified icon or
picture within the larger bmp file.

Part 1 - GX Developer Basics 41

{?context} is a context test that if not true will shade the
item Name in the menu. The following contexts are
supported:
{?map} a current map is open
{?gdb} a current database is open
{?map_or_gdb} a current map or database is open
{?map_and_gdb} a current map and database are
open

SEPARATOR None Places a separator to space items in the toolbar when
displayed.

File Names
Files to be located by name, either in OMN files, GEOBAR files, or in scripts, will be
located either in their default location (<geosoft>\omn for menu files, <geosoft>\gx
for GX files), or in the location explicitly identified by a full path name. For
explicitly located files, you may use a prefix <label> to identify a directory in which
to locate a file. Allowable <label> values are:

<geosoft> the main Geosoft installation directory.

<geosoft2> the secondary Geosoft installation directory (typically user).

<geotemp> the Geosoft temporary file directory.

<windows> the operating system Windows directory.

<system> the operating system SYSTEM directory.

<other> other environment variables. The “Geosoft/Oasis
montaj/Environment” registry is searched first. If the name
indicated by “other” is not found, the user’s environment is
searched.

For example, if you install your custom system, including GXs, in the
user\my_system directory, you can identify the GX in your OMN file as follows:
ITEM,”Run one of my GX’s”,<geosoft>\user\my_system\my_gx.gx

Internal commands
The list of internal commads can be found in the GX Developer.chm help file. They
can be activated from an ITEM in a menu or toolbar. Note that internal commands are
not stored in a script or in the processing log file. Only GX commands and GX
parameters appear in a script of a log file. If scripting is required, most commands can
be emulated by writing a GX that performs the required action.

Pop-Up Menus
A pop-up menu is a context sensitive menu that appears when the right mouse button
is pressed. The menu that is displayed (popped-up) depends on what has been
selected, where the mouse is located and/or the current mode of Oasis montaj. The

42 Part 1 - GX Developer Basics

default oasis pop-up menus are defined in the file montaj_popups.smn in the
Geosoft directory. The following table lists some of the available pop-up menus:

Popup Name Context

@PopupSelLine Line/group

@PopupSelChanNone Empty channel

@PopupSelChan Loaded channel

@PopupSelData One or more date items selected in a channel/line

@PopupSelBDat Data from all lines on this channel

@PopupSelProf Cursor in a profile window

@PopupSelFid Fid is selected

@PopupMap Map with nothing selected

@PopupSelGroup Group selected and in context

@PopupSelView View selected and in context

@PopupSelItem Group edited and item selected

@PopupSelGrid AGG group selected

@PopupGroupEdit Group opened for edit, nothing selected

@PopupMapGroup Map in group select mode, no group selected

@PopupMapView Map in view select mode, no view selected

@PopupSelCSymb Colour symbol group selected

@PopupBoxMark Group edited, multiple items selected

@PopupSelPAGG Poly-aggregate (animation) selected

… …

The SHELL command
An ITEM can use the SHELL action to identify an operating system command to be
executed. The SHELL action syntax is as follows:

 ITEM "Text" ,SHELL(verb;file[;parameters;directory;ShowCmd])
 ITEM "Text" ,SHELL(WinHelp;data[;nCmd])

The Windows "ShellExecute" command is called with the specified parameters. For
the WinHelp verb, the Windows WinHelp command is used. Please refer to your
Windows API documentation for the use of these parameters. Note that the items in
square brackets are optional and are for special use when full control of the Windows
functions are required.. ShowCmd and nCmd are both integer values that can be set to
the Windows manifest constant values as required. By default, ShowCmd will be 1
(SW_SHOWNORMAL), and nCmd will be 258 (HELP_COMMAND).

The following are common examples show how to use the SHELL command:
ITEM "&Geosoft Website",SHELL(open;http://www.geosoft.com)

Part 1 - GX Developer Basics 43

ITEM "&Geosoft Website",SHELL(open;http://www.geosoft.com)

ITEM "&Send a message",SHELL(open;"mailto:geonet@lists.geosoft.com")

ITEM "&Subscribe",SHELL(open;
"mailto:majordomo@lists.geosoft.com?subject=Subscribe%20to%20GEON
ET%20user%20help%20list.?body=SUBSCRIBE%20gxnet")

ITEM "Ho&w to get help...",SHELL(WinHelp;
"JumpID(\"oe32.hlp\",\"ID_HELP_TECH_SUPPORT_TOPIC\")")

Displaying images for items in menus
Menu items can display images (icons really) to stress what an item does or
represents. Icons must be 18 x 18 in size (pixels) and can be stored individually or
contained in a larger bitmap file and indexed by the image number in square brackets
[]. For example, if my bitmap file contains six 18 x 18 images and the item requires
the 4th image in the file you would use <image.bmp[3]> to reference that position
(index count begins at 0). Image files are .bmp files and are usually stored in the img
subdirectory of Oasis montaj.

Examples:
ITEM "Run &GX...", gxrun.gx <standard.bmp[13]>

ITEM "&Load menu...", *ID_VIEW_LOADMENU <standard.bmp[14]>

Controlling item activation
Some items should only be active if the project has a database or a map open. You
can specify the item dependency by placing one of the following qualifiers at the end
of an ITEM line. The menu item will be greyed out if the dependancy is not true:

{map}
{gdb}
{map_or_gdb}
{map_and_gdb}
{packed_map}

Examples:
ITEM "New database line", newline.gx {gdb}

ITEM "Display on the map", display.gx {map}

ITEM "Draw database line on map", drawline.gx {map_and_gdb}

Note that dependencies {map} can be in any order at the end of a line.

How menus are loaded
The default Oasis montaj menu will contain the minimum menu you see when you
do not have a project open. This includes a File menu, a Window menu and a Help
menu. When you create a new project, Oasis montaj first loads the coremenus.omn
file, then loads the menu(s) specified by the Default Menu entry in the settings.gx.
When an existing project is opened, the same actions are executed and then any
menus that were open when the project was last closed are also displayed.

If the user clears menus, all menus are removed except the coremenus.omn file.

44 Part 1 - GX Developer Basics

If you want your application to completely control your users menu, you can change
the Default Menus entry. You should look at the contents of montaj.smn and
montaj_popups to see if there are any components of these menus that you want to
include in your application.

Geosoft Environment Settings (geosettings.meta)
The geosettings.meta file in the Geosoft ini directory is used to maintain user
preferences for a variety of default settings when your user is using the system. You
can use this file to store your own GX default settings, and you can control the access
you want to provide your users. The ASCII file ini.doc in the Geosoft etc directory
documents all parameters that may appear in this file.

The following SYS functions can be used to access and change information in the
geosoft.ini file:

iGlobal_SYS Get a global parameter setting.

GlobalSet_SYS Set a global parameter setting.

GlobalReset_SYS Reset the global parameters to original values.

WriteGlobal_SYS Modify the global parameters to current settings.
(Rewrite the geosettings.meta file.)

Refer to sys.gxh for information on how to use these functions. You can also look at
the SETTINGS GX source code to see how Geosoft modifies the global settings.

Part 2 - Working with GX Developer 45

Part 2 - Working with GX Developer
This part of the documentation discusses object-oriented programming in general and
provides a users guide for using some of the key components of the Oasis montaj
system. Part 1 - GX Developer Basics provides reference information about how to
use the compilers and specific language rules and syntax.

Building a GX Application Suite
GX Developer has been designed to enable you to build a complete application that
can be run from Oasis montaj. With GX Developer you have access to almost all
components of the Oasis montaj environment and you can customise most of what
your end-user will see when using your application.

A GX application will normally consist of a menu and a set of GXs that perform
specific functions. The menu serves to expose the structure and capabilities of your
application and lets users run your GXs from the Oasis montaj menu. You may
choose to completely replace the menus provided as part of Oasis montaj, or you
may create an application that is simply added to the basic menus. See Working with
Menus for more information on how to create menus.

You can also control certain Oasis montaj features and settings using settings in the
geosoft.ini file located in the GEOSOFT directory. See How menus are loaded for
more information about the Geosoft environment.

Object-Oriented Programming
 The OASIS data processing system consists of a graphical user interface, a database
system for very large data sets, an integrated mapping and visualization system, and a
processing systems that processes data and creates maps. There are also many layers
of functionality that enable you to interact with the databases, maps, the processing
engine and the outside world. In order to simplify this world, Oasis montaj was
designed and written using object-oriented programming techniques.

The object structure of the system is also apparent to the GX Developer. For
application developers experiencing object-oriented programming for the first time
this can be confusing since there are significant differences from purely procedure-
based programming. This section is intended to acquaint you with the object-oriented
structure of the OASIS database environment and introduce you to some of the key
concepts that will influence your GX programming.

A fundamental component of an object-oriented system is a Class. A Class
encapsulates the information, features and functions (also called methods) that are
used to manipulate the contents of the Class. A good analogy to a Class is a House.
When you think of a House, you think of a building that houses a single family,
contains a kitchen, bedrooms, family members, front door, etc., and when you knock
on the door (execute a method), someone answers. This is a Class called House. Note
that a Class does not exist; it is just the set of characteristics that make up what you
think of as a House and the methods that you can use to interact with a House.

46 Part 2 - Working with GX Developer

A class instance does exist – it is a specific house, say 2128 Langtry Drive in
Oakville, Ontario, Canada. There can be many instances of the class House, each with
its own unique contents and characteristics. According to our definition, all instances
of a House will have a front door, and when you knock on it someone will answer.
For a class instance to exist, it must be created, at which time any resources required
to create the class are consumed (bricks, wood, etc for a House; memory, disk space,
etc for a GX class).

In GX Developer, a variable must be declared to hold an instance of a class. The
variable type will be the class name, and the variable name will be used to reference
that instance of the class. The variable is often called a class handle. Note that
declaring a class variable does not create the class – it just creates a name that can be
used for an instance of that class. All classes will have a “Create_ “ method to create
an instance of a class, and a “Destroy_” method to destroy an instance of a class and
return its resources to the system. Other class methods will only work on classes that
have been created and not yet destroyed.

A GX programming example is a Class named VV. This class is used to hold a single
array of any type of data. One of its key characteristics is that it can hold and
efficiently manipulate extremely large data arrays of data. It also comes with a rich
set of methods that can be used to manipulate the data in the array (such as filter it,
enlarge it, get and set values in it, etc). The VV class and the methods that manipulate
the class are described in the prototype file vv.gxh in the GxDev/gxh directory. There
are also many other classes that can accept a VV instance as an argument to one of
their class methods. For example, the DB class (the database class) has a method
(PutChanVV_DB) that stores a VV instance in a channel of a database.

In summary, a Class has a name and describes a set of information (data) and what
you can do with it. A Class instance is a specific unique instance of a class, and
methods are the things you can do to manipulate an instance of a class.

Differences between Procedural and Object-Oriented Programming
In an object-oriented world, you will notice many differences between procedural
languages, such as FORTRAN, and object-oriented languages, such as the GX
Programming Language. While a full discussion of these differences is beyond the
scope of this manual, there are a few basic concepts that you should remember:

• Data hiding
• Instantiation
• Objects versus OASIS symbols

Data hiding is a fundamental characteristic of objects. This means that you cannot
directly access or view the data within an object except through the methods
(functions) of the class object. For example, the VV class deals with 1-dimensional
data arrays, and it can efficiently store and manipulate very large array data sets. The
VV class hides how it does this from you, and it hides how it stores the data in the
computer memory because this is really of no concern to you. To access data in a VV
array, you will use VV methods such as iLength_VV, which tells you the length of

Part 2 - Working with GX Developer 47

the VV, and rGetReal_VV or SetReal_VV to get and set a real value in a VV array
efficiently. Such as with virtual vectors (which replace arrays in the GX
environment). To see all of the data in the vector, you require two methods — one for
determining the length of the vector (iLength_VV) and one for extracting the data
(rGetReal_VV). You also require a loop to extract each data point until the end of
the vector (i.e. length) is reached.

Instantiation is the process of creating instances and returning handles to objects. To
understand this concept, consider the dialog box – an interface component that lets
you accept or display information to users. In GX programming, we provide a method
for creating a dialog box (Create_DGW). When you use this method, the system
assigns memory to a database object (i.e. creates an instance of the object) and returns
a handle to the dialog box.

You can continue creating instances of other dialog boxes until you run out of
memory. The key point to remember is that each instance has its own handle — the
connection that enables you to access the dialog box and perform various actions with
it. Handles are discussed in the next section.

Another key element of the object-oriented programming component in the OASIS
environment is the treatment of objects and symbols. As we learned above, objects
are unique components of the OASIS system and interface that we can manipulate.
Symbols, on the other hand, are the named parts of the database consisting of lines
and channels. Each line and channel has its own identifier.

When working with symbols, keep in mind that they are defined in the database.
When you use a symbol (line, channel), the system returns a keyword (e.g. a line or
channel id). You don't work with the symbol directly. Symbols are permanent

In contrast, objects can be any part of database or system (database itself or a part of
the Graphical User Interface). When you use an object you must associate a handle
with it. When you destroy an object, the instance disappears. In other words, objects
are not permanent – they are tools that exist only as long as you require them.

Working with Library Functions
When you are starting to program GXs, one key point our application developers
stress is to know the libraries (classes) and functions (methods) in each library. These
provide you with all of the functionality you require to use the OASIS interface, get
data and perform actions (i.e. processing) on data.

Although it is a good idea to be familiar with all libraries, there are certain ones you
will use more than the others. These are shown in the following table:

Tasks GXH Library

Database (lines, channels and database) DB, DU

File handling RA, WA, BF

Strings STR

System SYS

48 Part 2 - Working with GX Developer

Maps, Views MAP, MVIEW

Vectors (arrays) VV

GX Structure and Program Flow
It is rare that a new GX is created completely from scratch. Instead, a new GX is
created by modifying an existing GX, even if only for the general outline.

The COPY GX
The following is a walk-through of a typical, well-designed GX function, the COPY
GX, which is used to copy one channel to a new one — if the new channel does not
exist, it will be created, and the channel data can be decimated during the copy.

The walk-through is intended to show the general outline of a GX, and establish some
general principals for writing a GX; a fuller description of individual processes found
within the GX may be found later in this section.

Step 1: Set the header information: NAME, VERSION and DESCRIPTION.

• In addition to being useful for source control, these parameters are recognized by
the VIEWGX program.

• Note that multi-line text is allowed (see the DESCRIPTION statement.)
• Parameters residing in the system parameter block, used and/or modified by this

GX, are explained.
• As in normal C, “//” indicates the start of a comment, which is ignored during

compilation.

//==
NAME = "Copy one channel to another"
VERSION = "v1.01.00 Copyright Geosoft Inc. 1999"
DESCRIPTION = "

Copies one channel to another. If the new channel does not exist,
it
will be created with the same definition as the original channel.
The channel data can be decimated during the copy.

Parameters:

COPY.FROM - Original channel
 .TO - Destination channel
 .DECIMATE - Decimation factor, default 1
 .FIDSTART - New fiducial start, default is current start.
 .FIDINCR - New fiducial increment, default is current
increment.
"

Step 2: Include the GX resources.

Part 2 - Working with GX Developer 49

• The compiled resource is contained in a Geosoft Resource “GR” file, while
resource identifiers are contained in the Geosoft Resource Header “GRH” file.

//==
// RESOURCES
//==

RESOURCE = "copy.gr"
#include "copy.grh"

Step 3: Included GX Function Header files. These contain the necessary library
function prototypes.

• GX library functions may not be used unless their prototypes are included.
• The “catch-all” header ALL.GXH includes all the regular, non-mapping Geosoft

function prototypes; ALL32.GXH is now functionally equivalent to ALL.GXH (it
is now just an #include “all.gxh” statement) and is no longer required for mapping
prototypes. Constants using the #define pragma may also be defined here.

//==
// INCLUDE
//==

#include <all.gxh> // system

Step 4: Declare variables.

• These include all object handles, as well as the int, real and string types.
• Though not required, it is common practice to declare variables in the following

order: handles, integers, reals, strings.

//==
// VARIABLES
//==

EDB EData; // Database handle
DB Data; // Database handle
DB_SYMB InCh; // Channel Handle
DB_SYMB OutCh; // Channel Handle
DB_SYMB Line; // Line Handle
DGW Diag; // Dialogue handle
LST List; // List handle

int i; // Utility
int iN; // Decimation factor
int iLines; // Number of Lines Processed
int iTotLines; // Total Number of Lines to Process
real rFidStart; // Fid start
real rFidIncr; // Fid increment
real rNewStart; // New fid start

50 Part 2 - Working with GX Developer

real rNewIncr; // New fid increment
string(50) sInCh; // Channel Names
string(50) sOutCh; // Channel Names
string(32) sTemp; // Temp string
string(60) sLabel; // Label for progress bar

Step 5: Enclose the main code block.

• This includes the remainder of the source file.
• The code is enclosed in a pair of curly brackets.

//==
// CODE
//==

{

Step 6: Do the initial setup.

• This usually involves getting the current database or map, and setting up
information required later for user dialogs.

• Some GXs may also recover parameters from a control or initialization file here,
and set various default values.

 // --- Get database ---

 EData = Current_EDB();
 Data = Lock_EDB(EData);

Step 7: Perform interactive processes.

• Interactive processes should be enclosed by the
if(iInteractive_SYS()){} control block.

• These processes generally involve creating, loading, displaying, then interrogating
a dialog object for information modifiable by a user.

• Variables are usually obtained from, and loaded back into, the workspace
parameter block, using the SetInfoSYS_DGW and GetInfoSYS_DGW
functions.

 // --- Are we running interactively ? ---

 if (iInteractive_SYS())
 {

 // --- Create the Dialogue ---

 Diag = Create_DGW("COPYForm");

 // --- Set up lists ---

Part 2 - Working with GX Developer 51

 List = GetList_DGW(Diag,_COPYFORM_0);
 SymbLST_DB(Data,List,DB_SYMB_CHAN);
 Sort_LST(List,0,0);
 List = GetList_DGW(Diag,_COPYFORM_1);
 SymbLST_DB(Data,List,DB_SYMB_CHAN);
 Sort_LST(List,0,0);

 // --- Set any Defaults ---

 SetInfoSYS_DGW(Diag,_COPYFORM_0,DGW_TEXT,"COPY","FROM");
 SetInfoSYS_DGW(Diag,_COPYFORM_1,DGW_TEXT,"COPY","TO");
 SetInfoSYS_DGW(Diag,_COPYFORM_2,DGW_TEXT,"COPY","DECIMATE");
 SetInfoSYS_DGW(Diag,_COPYFORM_3,DGW_TEXT,"COPY","FIDSTART");
 SetInfoSYS_DGW(Diag,_COPYFORM_4,DGW_TEXT,"COPY","FIDINCR");

 // --- Run the Dialogue ---

 i = iRunDialogue_DGW(Diag);
 if (i != 0) Cancel_SYS(); // The user hit cancel

 // --- Get the Strings ---

 GetInfoSYS_DGW(Diag,_COPYFORM_0,DGW_TEXT,"COPY","FROM");
 GetInfoSYS_DGW(Diag,_COPYFORM_1,DGW_TEXT,"COPY","TO");
 GetInfoSYS_DGW(Diag,_COPYFORM_2,DGW_TEXT,"COPY","DECIMATE");
 GetInfoSYS_DGW(Diag,_COPYFORM_3,DGW_TEXT,"COPY","FIDSTART");
 GetInfoSYS_DGW(Diag,_COPYFORM_4,DGW_TEXT,"COPY","FIDINCR");

 // --- Destroy the Dialogue ---

 Destroy_DGW(Diag);

 }

Step 8: Retrieve information from the workspace parameter block and verify it.

• Verification means ensuring that the data exists, and that it falls within acceptable
limits for the process that must be performed.

 // --- Get Parameters ---

 GetString_SYS("COPY","FROM",sInCh);
 GetString_SYS("COPY","TO",sOutCh);
 iN = GetInt_SYS("COPY","DECIMATE");
 rNewStart = GetReal_SYS("COPY","FIDSTART");
 rNewIncr = GetReal_SYS("COPY","FIDINCR");

 // --- Verify parameters ---

 if (iN==iDUMMY) iN = 1;
 if (iN<= 0)
 Abort_SYS("Decimation factor must be > 0.");
 if ((rNewIncr!=rDUMMY)&&(rNewIncr<=0.0))
 Abort_SYS("Fid increment must be > 0.");

52 Part 2 - Working with GX Developer

Step 9: Do setup for processing.

• Create handles, retrieve and verify symbols needed for processing.
• Initialize the progress indicator, as well as variables necessary to track progress.

 // --- Does the Input Channel Exist ? ---

 if (!iExistSymb_DB(Data,sInCh,DB_SYMB_CHAN))
 Abort_SYS("channel does not exist.");
 InCh = FindSymb_DB(Data,sInCh,DB_SYMB_CHAN);

 // --- Does the Output Channel Exist ? ---

 if (!iExistSymb_DB(Data,sOutCh,DB_SYMB_CHAN)) {
 OutCh = DupSymb_DB(Data,InCh,sOutCh); // Create it
 UnLockSymb_DB(Data,OutCh);
 } else
 OutCh = FindSymb_DB(Data,sOutCh,DB_SYMB_CHAN);

 // --- Lock the channel symbols ---

 if (InCh != OutCh)
 LockSymb_DB(Data,InCh,DB_LOCK_READONLY,DB_WAIT_INFINITY);
 LockSymb_DB(Data,OutCh,DB_LOCK_READWRITE,DB_WAIT_INFINITY);

 // --- Prepare to do the work ---

 iLines = 0;
 iTotLines = iCountSelLines_DB(Data);
 Progress_SYS(1);

Step 10: Process the data or map.

• Processes often loop through selected database lines, or call functions which do
so.

 // --- Go through all selected Lines ---

 ProgName_SYS(“”,1);
 Line = FirstSelLine_DB(Data);
 while (iIsLineValid_DB(Data,Line))
 {
 // --- Update the Progress Bar ---

 LockSymb_DB(Data,Line,DB_LOCK_READONLY,DB_WAIT_INFINITY);
 GetSymbName_DB(Data,Line,sTemp);
 UnLockSymb_DB(Data,Line);
 Strcpy_STR(sLabel,”Copy line: “);
 Strcat_STR(sLabel,sTemp);
 ProgName_SYS(sLabel,0);
 ProgUpdate_SYS((int) ((real) iLines /

Part 2 - Working with GX Developer 53

 (real) iTotLines * 100.0));

 // --- Copy/Decimate ---

 Decimate_DU(Data,Line,InCh,OutCh,iN);

 // --- Correct the Fiducial Start ---

 if ((rNewIncr!=rDUMMY)||(rNewStart!=rDUMMY)) {

 if (rNewStart==rDUMMY)
 rFidStart = rGetFidStart_DB(Data,Line,InCh);
 else
 rFidStart = rNewStart;
 if (rNewIncr==rDUMMY)
 rFidIncr = rGetFidIncr_DB(Data,Line,InCh);
 else
 rFidIncr = rNewIncr;

 SetFid_DB(Data,Line,OutCh,rFidStart,rFidIncr);
 }

 // --- Advance to Next Line ---

 Line = NextSelLine_DB(Data, Line);
 iLines++;

 }

 // --- Add maker ---

 EasyMakerSymb_DB(Data,OutCh,”Copy channel”,”COPY;”);

 // --- Unlock the Channel Symbol ---
 if (InCh != OutCh) UnLockSymb_DB(Data,InCh);
 UnLockSymb_DB(Data,OutCh);

Step 11: Clean up.

• Destroy any created objects which should not exist once the GX terminates.
• Unlock databases and maps.
• Turn off the progress indicator.

 // --- done ---

 Progress_SYS(0);
 UnLock_EDB(Edata); // --- Release the database ---
}

Working with Databases
The following sections describe the following procedures.

54 Part 2 - Working with GX Developer

• Opening and locking a database
• Selecting lines for processing
• Locking and unlocking lines and channels
• Applying math expressions to database

Opening and Locking a Database
An important distinction exists in Oasis montaj between a database (DB) and an
edited database (EDB). An EDB is what the user sees on the screen – it is a
representation of the data (the DB) which exists somewhere on disk. With the EDB
object is possible to do a number of things, including looking at, loading or unloading
channels of data, creating profiles, and marking ranges of data. The one thing that
cannot be done with the EDB is retrieve or change data, or select individual lines for
processing. To do this, the database must be made exclusively available to the
individual user. This is performed by locking the database to other users. The locking
function returns the DB handle, which can be used to access the data directly:

// --- Get database ---

Edata = Current_EDB();
Data = Lock_EDB(Edata);

// --- Access data using the DB handle “Data”
.
.
.

// --- Release the database ---

UnLock_EDB(Edata);

Selecting Lines for Processing
Many processes access the database one line of data at a time. This is performed
using a loop structure and the FirstSelLine_DB and NextSelLine_DB functions,
which allow the process to step through all the selected lines in the database:

Line = FirstSelLine_DB(Data);
while (iIsLineValid_DB(Data,Line))
{

 // --- Process the line ---
 .
 .
 .

 // --- Advance to the next line ---

 Line = NextSelLine_DB(Data, Line);
 iLines++; // increment a counter for the progress bar

Part 2 - Working with GX Developer 55

}

Line selection is usually done from the OASIS interface, for instance by using the
selection tool.

A common GX dialog option, found, for instance, in data export GXs, allows the user
to process all the lines, just the selected lines, or the currently displayed line. The
following annotated example, excerpted from the EXPDB GX, shows how this
selection process is implemented within a GX.

• Within the variable declaration section, declare a DB_SELECT object. This will
be a handle to the current selection list within the database; because it already
exists, it is not an object that must be “Created” or Destroyed”.

DB_SELECT Select; // current selection mode

• The line selection choice is retrieved from the workspace parameter block, and
the selection is verified and interpreted as one of the line selection options.

GetString_SYS(“EXPDB”,”LINE”,sLine);

if (iChar_STR(sLine) == iChar_STR(“D”))
 iLine = DU_LINES_DISPLAYED;
else if (iChar_STR(sLine) == iChar_STR(“S”))
 iLine = DU_LINES_SELECTED;
else if (iChar_STR(sLine) == iChar_STR(“A”))
 iLine = DU_LINES_ALL;
else
 Abort_SYS(“Line selection invalid”);

• The identity of the currently viewed line is determined from the edited database
(EDB) object

Edata = Current_EDB();

// --- Get the name of the currently selected line ---

GetCurLine_EDB(Edata,sCurLine);

• Get the database (DB) handle by locking the edited database.

Data = Lock_EDB(Edata);

• Perform the selection; if the user wishes to use all the selected lines, nothing
needs to be done before processing begins. The selection list handle is obtained
using the GetSelect_DB function.

if(iLine != DU_LINES_SELECTED) {
 Select = GetSelect_DB(Data);
 if (iLine == DU_LINES_DISPLAYED) {
 Select_DB(Data,””,DB_LINE_SELECT_EXCLUDE);
 Select_DB(Data,sCurLine,DB_LINE_SELECT_INCLUDE);

56 Part 2 - Working with GX Developer

 }
 else if (iLine == DU_LINES_ALL)
 Select_DB(Data,””,DB_LINE_SELECT_INCLUDE);
}

• Now that the correct set of lines is selected, do the processing.

// --- process the data ---
.
.
.

• Finally, return the line selection list to its original state.

// --- reset starting selections

if (iLine != DU_LINES_SELECTED)
 SetSelect_DB(Data,Select);

Locking and Unlocking Lines and Channels
The OASIS database is currently designed for a single-user environment, but contains
features that will smooth the possible future transition to a multi-user environment.
For this reason, you may be required to lock and unlock objects for use.

For example, if you are filtering the lines in a database, you require an input channel
(with read status) and an output channel (with read/write status). When you are
reading and writing to a channel, the system requires that you lock it, perform the
reading or writing process and unlock it. This prevents the data from being altered by
another process or user while you alter some of the data.

For certain operations, such as applying math expressions, the same requirements
apply. However, when you look at sample code, you will notice that channels are not
locked or unlocked. Because the locking and unlocking can be quite complex for
math expressions, the system is designed to manage this task for you.

The following examples of locking and unlocking lines and channels are from the
COPY GX, shown above.

• Creating a line or channel symbol using the DupSymb_DB function automatically
locks it. (The CreateSymb_DB function does not lock the new symbols.) In the
following code, if the output channel doesn’t already exist, it is created from an
already existing symbol using the DupSymb_DB function. Since it will be locked
later, the lock should be temporarily “undone”. It is possible to lock an object
more than once, but care should be taken that an equal number of unlock
operations have been performed upon completion.

// --- Does the Output Channel Exist? ---

if (!iExistSymb_DB(Data,sOutCh,DB_SYMB_CHAN)) {
 OutCh = DupSymb_DB(Data,InCh,sOutCh); // Create it
 UnLockSymb_DB(Data,OutCh);
} else

Part 2 - Working with GX Developer 57

 OutCh = FindSymb_DB(Data,sOutCh,DB_SYMB_CHAN);

• The same channels are locked throughout the line-by-line processing, so it makes
sense to lock them just once, outside the loop. Notice that the input channel is
locked “READONLY”, since no changes will be made to it. It is a wise practice
never to give more access to an object than the process requires.

// --- Lock the channel symbols ---

if (InCh != OutCh)
 LockSymb_DB(Data,InCh,DB_LOCK_READONLY,DB_WAIT_INFINITY);
LockSymb_DB(Data,OutCh,DB_LOCK_READWRITE,DB_WAIT_INFINITY);

• Within the line loop, the line symbols are locked momentarily in order to
determine the line name for use in the progress bar. (See the important note about
line locks below).

// --- Update the Progress Bar ---

 LockSymb_DB(Data,Line,DB_LOCK_READONLY,DB_WAIT_INFINITY);
 GetSymbName_DB(Data,Line,sTemp);
 UnLockSymb_DB(Data,Line);
 Strcpy_STR(sLabel,”Copy line: “);
 Strcat_STR(sLabel,sTemp);
 ProgName_SYS(sLabel,0);
 ProgUpdate_SYS((int) ((real) iLines / (real) iTotLines * 100.0)
);

• Finally, after the loop is completed, unlock the channel.

// --- Unlock the Channel Symbol ---

if (InCh != OutCh) UnLockSymb_DB(Data,InCh);
UnLockSymb_DB(Data,OutCh);

Note: It is necessary to lock a line only when accessing information about the line

symbol itself (as in the example above, where the line name is retrieved).
However, a lock is not required when accessing line data itself, for instance in
the calls to Decimate_DU and SetFid_DB in the COPY GX above, even
though these functions take the line handle as an argument. It is possible that
in the future, if Oasis montaj becomes truly multi-user capable, that this
‘hole” will be filled and a line lock will be required for all functions taking the
line symbol as an argument. We strongly recommend that in new code that the
line lock and unlock statements be placed to enclose all functions using the
line symbol to access data to within the loop structure, as in the following
example:

while (iIsLineValid_DB(Data,Line))
{

58 Part 2 - Working with GX Developer

 // --- Lock the line ---

 LockSymb_DB(Data,Line,DB_LOCK_READONLY,DB_WAIT_INFINITY);

 // --- Update the Progress Bar ---
 .
 .
 .

 // --- Process the line ---
 .
 .
 .

 // --- Unlock the line ---

 UnLockSymb_DB(Data,Line);

 // --- Advance to the next line ---

 Line = NextSelLine_DB(Data, Line);
 iLines++; // increment a counter for the progress bar
}

Parameter Storage in Oasis montaj
One of the more subtle features of the Oasis processing environment is the strategy
employed for storing and retrieving settings, such as channel names and processing
parameters that are used in your GXs. When designing applications, you need to be
aware of how Oasis manages these data storage and retrieval operations. Data can be
stored in a number of different places, depending on its context and purpose.
Proceeding from most general to most specific, information can be stored in the
geosettings META file, in an individual project, or in a database line or channel.
Information can also be saved to a map, or an individual view within the map. Choice
of location is dependent on how widely the user wishes the information to be made
available, and how specific it is to the object with which it is stored.

Parameter Storage in the geosettings META file
The geosettings META file in the Geosoft ini directory contains global default
settings for use throughout the Oasis montaj environment. This is the type of
parameter set using the “Oasis montaj Settings” menu item (the SETTINGS GX) or
the Advanced Settings (the ADVSETTINGS GX). To set a parameter in the
geosettings META file, examine the following example:

GlobalSet_SYS("MYGROUP.MYPARAM", “Example”);

This command sets the system parameter “MYPARAM” in the group
“[MYGROUP]” to the value “Example”. Once all values are set, it is necessary to use
the following command to save the changes to the actual file:

WriteGlobal_SYS("");

Part 2 - Working with GX Developer 59

Stored values may be retrieved in the following manner:

if (iGlobal_SYS("MYGROUP.MYPARAM",sTemp) == 0) {
 // Do something...
}

For more information on storing and retrieving global parameters, see the SYS.GXH
header file.

Parameter Storage in the Project
Each Oasis montaj project has a designated area for storing program information
called the parameter block. Data stored in this area is unique to the project — it
cannot be shared with other projects directly.

When you run a GX, typically you will use functions, such as SetInfoSYS_DGW or
GetInfoSYS_DGW to set parameters in dialog boxes and to retrieve them for
processing. The values of these parameters are saved in the workspace for future use.

Saving parameters within the workspace gives you flexibility when running GX
processes using Geosoft Scripts.

USING SETINFOSYS_DGW AND GETINFOSYS_DGW

The SetInfoSYS_DGW or GetInfoSYS_DGW functions transfer values between
the workspace parameter block and the dialog. Without these functions, the transfer
would require two steps. The following two lines:

GetString_SYS(“MYGX”, “PARAM”, sBuff); // --- retrieve from parameter block
SetInfo_DGW(Diag, _MYFORM_0, DGW_TEXT, sBuff); // --- set in dialog

are replaced by...

SetInfoSYS_DGW(Diag, _MYFORM_0, DGW_TEXT, “MYGX”, “PARAM”);

Perusal of GX code reveals that SetInfoSYS_DGW (and by extension
GetInfoSYS_DGW), is used mainly for passing four different types of information:
real, integer and string variables, read-only text, file paths, and list values.

REAL, INT AND STRING VARIABLES

Most commonly, parameters are numeric or text variables. Parameters are always
stored as text strings, even if they are later interpreted as real or int values using
the GetReal_SYS and GetInt_SYS functions. The source line would look like:

SetInfoSYS_DGW(Diag, _MYFORM_0, DGW_TEXT, “MYGX”, “PARAM”);

while the corresponding lines in the resource (GRC) file, for real, int and
string variables, could be:

60 Part 2 - Working with GX Developer

EDIT ,,,30,"A Real value",,REAL
EDIT ,,,30,"An Int value",,INT
EDIT ,,,30,"A String value"

The “DGW_TEXT” parameter indicates that the parameter is to be interpreted as a text
string when it is passed back and forth between the parameter block and the dialog. In
the resource file the “REAL” and “INT” parameters ensure that the value is correctly
interpreted and validated by type.

READ-ONLY TEXT

EDIT resources may be used to print read-only information to a greyed field in the
dialog, such as a statistical value, or a channel name. Values are passed into the
dialog using SetInfoSYS_DGW, or SetInfo_DGW, but there is no corresponding
GetInfoSYS_DGW or GetInfo_DGW call:

SetInfo_DGW(Diag, _MYFORM_0, DGW_TEXT, sChan);

while the corresponding line in the resource file could be:

EDIT ,,,30,"Current Channel",N

FILE PATHS

The “DGW_FILEPATH” argument is used when working with file names. Even
though just the local name of the file is displayed in the dialog field, the full path,
including disk and directories, is passed back and forth. The source code could be:

SetInfoSYS_DGW(Diag, _MYFORM_0, DGW_FILEPATH, “MYGX”, “FILENAME”);

The resource lines could be either of the following:

FEDIT,,,40,"Create a New File",R,NEW,,,*.dat
FEDIT,,,40,"Open an Old File",R,OLD,,,*.dat

LIST VALUES

Individual values from lists of items are passed as text strings, exactly as in the “Real,
Int and String Variables” section above. Therefore the “DGW_TEXT” parameter is
used:

SetInfoSYS_DGW(Diag, _MYFORM_0, DGW_TEXT, “MYGX”, “SIZES”);

The corresponding lines in the resource file, along with the list items, could be:

LEDIT,,,20,"Sizes",R,FORCE,"Large",SIZE

RESOURCE,LIST,SIZE
ITEM, Small
ITEM, Medium
ITEM, Large

Part 2 - Working with GX Developer 61

LIST ALIAS VALUES

Often, lists items have two parts, the value (the name which appears to the user), and
the alias (which we wish to work with). An example is a choice of “yes” or “no”,
where the item “yes” could have as its alias the number “1”. To the programmer, it is
the alias that is useful. The “DGW_LISTALIAS” argument ensures that the list alias
is passed back and forth to the dialog, even though the list value is seen by the user (If
you wish the value instead, use the “DGW_TEXT” option). The following is an
example using list aliases:

SetInfoSYS_DGW(Diag, _MYFORM_0, DGW_LISTALIAS, "MYGX", "LEGEND");

The corresponding lines in the resource file, along with the list items, could be:

LEDIT,,,20,"Plot Legend?",R,FORCE,"Yes",YN

RESOURCE,LIST,YN
ITEM,"Yes" ,1
ITEM,"No" ,0

COLOUR VALUES

Before v5.0.7, colour values were specified using the LEDIT component and list
mappings between names like “Dark Red” and list values “R64”. This cumbersome
method has now been superseded by the CEDIT resource. In the GRC file, you would
replace the old combination of LEDIT and LIST resource:
LEDIT,,,20,"Colours",R,FORCE,"Black",COLOURS

RESOURCE,LIST,COLOURS
ITEM,"Black" ,K
ITEM,"Dark Red" ,R64
ITEM,"Green" ,G
ITEM,"Blue" ,B

with the new CEDIT resource:
CEDIT,,,20, "Colours","K"

The old “COLOURS” LIST is no longer necessary.

In the GXC code, the CEDIT resource is accessed using the “DGW_TEXT” option,
since it works directly with the colour string. When updating an older GXC file which
previously used the LEDIT resource for specifying colours, you would replace
SetInfoSYS_DGW(Diag, _MYFORM_0, DGW_LISTALIAS, "MYGX",
"COLOURPARM");

with

SetInfoSYS_DGW(Diag, _MYFORM_0, DGW_TEXT, "MYGX", "COLOURPARM");

No other GXC code need be altered to make use of the CEDIT resource.

62 Part 2 - Working with GX Developer

Parameter Storage in Oasis montaj objects
A special object, call the “REG” is used to store data within an individual database
line, database channel, map or map view. An example is measurement units (such as
“m” for meters), which are unique to a particular channel and which are stored within
the channel REG. The following example illustrates how the channel REG is obtained
and how parameter information is exchanged with it:

// --- Create (an empty) REG object ---

ChReg = Create_REG(128);

// --- Get the channel symbol, and the channel parameter data ---

Ch = FindSymb_DB(Data,sCh,DB_SYMB_CHAN);
GetRegSymb_DB(Data, Ch, ChReg);

// --- Get values from the REG ---

GetInt_REG(ChReg,"INTPARAM", iVal);
GetReal_REG(ChReg,"REALPARAM", rVal);
Get_REG(ChReg, "STRINGPARAM", sVal, sizeof(sVal));

// --- Use values...
.
.
.

// --- Set values back into the REG ---

SetInt_REG(ChReg,"INTPARAM", iVal);
SetReal_REG(ChReg,"REALPARAM", rVal);
Set_REG(ChReg, "STRINGPARAM", sVal);

// --- Set the REG data back into the channel ---

SetRegSymb_DB(Data, Ch, ChReg);

// --- Destroy the REG object ---

Destroy_REG(ChReg);

Note that the REG object is created, then filled with values from the channel using the
GetRegSymb_DB function. If the REG object is altered, the new settings must be
loaded back into the channel using SetRegSymb_DB for the changes to take effect
in the channel itself. Finally, the REG must be destroyed.

The line REG is accessed in the same way as the channel REG. A new REG object is
created, then filled, and must be destroyed in the end. It is accessed by using a line
symbol:

GetRegSymb_DB(Data, Line, LineReg); // Get REG from a line symbol
SetRegSymb_DB(Data, Line, LineReg); // Set REG to a line symbol

Part 2 - Working with GX Developer 63

Access to other objects’ REGs is handled differently. For a MAP or MVIEW object, a
handle to the object’s own REG is returned to the user, and the user works directly
with the object’s REG. No Create or Destroy is performed, and no “SetREG_MAP”
(for example) function is required:

// --- Get the handle to the map REG ---

MapReg = GetREG_MAP(Map);

// --- Set a value in the map REG ---

Set_REG(MapReg, "MAP.MAPPARAM", sVal);

The REG in a map’s view is accessed using the GetREG_MVIEW function.

Data string values obtained from a REG may be loaded to, and retrieved from a
dialog using the SetInfo_DGW and GetInfo_DGW commands. (When using
REG-derived data in dialogs, it is most practical to work with all data, including real
and integer variables, as strings using the Get_REG and Set_REG functions.)
Alternatively, the REG settings can be added to the workspace parameter block using
the SetREG_SYS function, so that the SetInfoSYS_DGW function can be used, as
in the following example:

GetRegSymb_DB(Data, Ch, ChReg);
SetREG_SYS(ChReg);

// --- REG parameters are now available as SYS parameters ---

SetInfoSYS_DGW(Diag, _MYFORM_0, DGW_TEXT, “MAP”, “MAPPARAM”);
.
.
.

Note that the REG parameters should be stored in the form “GROUP.PARAM” so
that both the group and parameter values are defined in the system parameter block
when SetREG_SYS is called.

Working with Maps
Maps in Oasis montaj are graphic documents (.map files) that basically represent a
drawing that can be displayed in a map window or printed on paper. To work
effectively with maps, you need to be familiar with the purposes of maps in the
system as well as the role of views and groups. An excellent introduction to Geosoft
Maps and their components may be found in Chapter 5: Map Editing and CAD
Tools of the Oasis montaj Quick Start Tutorials book.

Views and Groups
A Geosoft map is a document that is designed to hold spatially referenced graphical
information. A map represents “sheet of paper”, that when printed, is a true map.
Everything that you see on a map is drawn in a map View, which is fundamentally a

64 Part 2 - Working with GX Developer

coordinate system that is located somewhere on the map drawing area. A map may
contain any number of Views, each with its own coordinate system and located as
required. Views normally represent a 2D coordinate system, but may also represent a
3D coordinate system (version 5.1.2 and later).

Graphics features that are drawn in a map View are placed in named Groups. For
example, contours may be drawn in a “Contour” group, survey locations may be
drawn in a “Survey” group, and images are each placed in their own group.
Organizing graphical information into groups allows us to deal conveniently with
certain types of information. For example, by selecting an image group we are able
to bring up an image manipulation tool; by selecting a flight-line plan we can activate
a direct database line link; or by selecting a graphics group we can edit graphic
features in the group.

3D Views also contain groups, but groups in a 3D View must be drawn on a specific
Plane within the view. 3D Views may contain any number of drawing planes, and
each plane may be oriented independently in space and have a relief surface defined
by a relief grid.

Base and Data Views
Most standard maps created by Geosoft applications will have at least two views – a
Base view and a Data view. The Base View uses the paper coordinates, with the
origin in the bottom left corner, and the units of measure is mm, and the Data View
normally uses the default ground coordinate system of the project, which is most
often a projected coordinate system. In some cases the Data view may use an
arbitrary coordinate system in which the “X” and “Y” scales are different, which
would be the case when plotting an X-Y graph of a function or data distribution.

It is possible to attach a coordinate map projection to a view. The view then becomes
“aware” of data in other projections. This extremely powerful mechanism allows
images created with one projection to be rendered in the view’s projection
automatically, without the intervention of the user. Similarly, links between different
maps and databases are aware of projections, and make any necessary conversions so
that the cursor positions are consistent between maps and data.

Opening and Locking a Map
As with databases, a distinction exists between the edited map object (EMAP), and
the map object itself (MAP). An EMAP is a handle to a map already open in Oasis
montaj, and under the control of the Oasis montaj interface. Through EMAP, you
can obtain information about how the map is displayed and you can control user
interface features, such as getting the current cursor position, determining the
currently selected view, or requesting the user to draw a polygon on a map.

To make changes to the map requires you to get a MAP handle, which is a two step
process:

EMap = Current_EMAP();

Part 2 - Working with GX Developer 65

Map = Lock_EMAP(EMap);

While you have the MAP handle, you cannot use any EMAP functions. On
completion of the GX, or when you need to use EMAP functions, the map can be
released:

UnLock_EMAP(EMap);

This allows Oasis montaj to update the map as it is displayed to the user.

Accessing Views
Whether you work with the Base view, Data view or some other view depends on the
type of operation to be performed. Annotations such as labels, title blocks, legends,
scale bars are usually done in the Base view, while geographically located objects,
such as postings, images, symbols, are drawn in the Data view. Access to a view is
obtained with a call to Create_MVIEW, as in the following example:

View = Create_MVIEW(Map,"*Data",MVIEW_WRITEOLD);

Often maps contain more than one view for drawing data.. The “*” in “*Data” means
that you want to access the currently selected data drawing view, which is the last
view selected by the user, but never the “Base” view.

The MVIEW_WRITEOLD opens the view so you can to the existing view.
Specifying MVIEW_WRITENEW will create a new view (replacing an view if it
already exists), and MVIEW_READ lets you read from a view. When creating a new
view, the coordinate system will be in millimetres relative to the map sheet, which is
the same as the Base view. Use the MVIEW coordinate scaling functions to establish
a coordinate system for a view (TranScale_MVIEW, SetWindow_MVIEW,
FitWindow_MVIEW, ScaleWindow_MVIEW).

Starting a Drawing Group
A group is collection of related objects plotted in a view. Each group in a view has a
unique name. Individual groups are normally created for things like images, sets of
symbols, line paths and annotations. It is recommended that you create a new group
each time you add a distinctive “feature” to the map. Because groups may be
conveniently selected as a whole, operations such as moving, hiding or changing
particular plotting attributes may be easily applied to all items in the selected group or
groups in a single operation.

Although groups may be named arbitrarily, each group in a view must have a unique
name. When Geosoft applications create groups, we normally place a type prefix at
the beginning of the name:

TYPE_my_name
Where

66 Part 2 - Working with GX Developer

TYPE Group type:
AGG aggregate
CSYMB ITR based symbol plot
SYMB other symbol plots
SLEG symbol legend
POST posting

Groups derived from a database will usually include the database name, and possible
channel in the group name. For example, an ITR-based (colours based on data value
ranges) symbol plot produced from the database “chem.gdb”, produced from selected
values from the channel Ag, would be named “CSYMB_chem_Ag”. Methods have
been created to automate this procedure. The naming process and group creation
process is illustrated in the following posting example:

GetName_DB(Data,DB_NAME_FILE,sDB); // Get database name
FileNamePart_STR(sDB,sDB,STR_FILE_PART_NAME); // Get root name of
 // database
GenGroupName_STR("POST",sDB,sChan,sGroup); // Make a group name
StartGroup_MVIEW(View,sGroup,MVIEW_GROUP_NEW); // Start the group

Setting Group Attributes
Group Attributes are drawing attributes that describe how to draw things in a group.
A new group has default attribute values, and normally you will want to reset some
yourself, using the appropriate MVIEW functions. There are no fewer than 24
attributes currently defined for map objects, and more may be added in the future.
These are listed in the following table, along with default values, and the function to
call to change the value. Note that linear dimensions are always specified in the
coordinates of the view, which may be ground units in the case of a “Data” view. For
example, if the view unit is metres, then setting the font size to 1.0 would mean that
the text height would be 1 metre according to the view scale. Angles are measured in
degrees, counter clockwise from the X-Axis.

Attribute MVIEW function Default Value

Line Thickness LineThick_MVIEW 0.1

Line Style LineStyle_MVIEW 0 (solid)

Line Pitch LineStyle_MVIEW 5

Line Colour LineColour_MVIEW black

Line Smoothing? LineSmooth_MVIEW 0 (do not smooth)

Font Name TextFont_MVIEW default from Settings

Font Size TextSize_MVIEW 2.5

Font Angle TextAngle_MVIEW 0

Font Colour TextColour_MVIEW black

Font Reference Position TextRef_MVIEW 0 (bottom left corner)

Part 2 - Working with GX Developer 67

Symbol Font SymbFont_MVIEW default from Settings

Symbol Number SymbNumber_MVIEW 0

Symbol Size SymbSize_MVIEW 2.5

Symbol Angle SymbAngle_MVIEW 0

Symbol Colour SymbColour_MVIEW black

Symbol Fill Colour SymbFillColour_MVIEW none (transparent)

Pattern Number PatNumber_MVIEW 0 (no pattern fill)

Pattern Style PatStyle_MVIEW MVIEW_TILE_RECTANGU
LAR

Pattern Size PatSize_MVIEW 2.0

Pattern Line Thickness Ratio PatThick_MVIEW 0.05

Pattern Density Ratio PatDensity_MVIEW 1.0

Pattern Angle PatAngle_MVIEW 0

Fill Colour FillColour_MVIEW none (transparent)

Clip Mode ClipMode_MVIEW 0 (clipping off)

Rendering Transparency sSetTransparency_MVIEW

1.0 - Opaque
0.0 - Transparent

Additional Notes
In a 3D view, the StartGroup_MVIEW will create a new group on the default
drawing plane, which will normally be the last plane created. You can change the
default drawing plane to a different existing plane by calling SetDefPlane_MVIEW.

If you apply a 3DN to a view that already contains groups, the groups will not have
an assigned plane, and will not appear in the 3D view. You should create a drawing
plane as required and call SetAllNewGroupsToPlane_MVIEW to place the
unassigned groups on the new plane.

Groups drawn in 3D vies cannot be edited. It is common to let your user create what
they want to see in 3D on a 2D View first so that they can edit the material before it is
placed in 3D. Refer to the V3DIMG GX for an illustration of how to do this.

After you have created a 3D view, you can activate the 3D viewer to allow your user
to manipulate the view right away. To do this, call ActivateView_EMAP after
unlocking the map.

Adding an Image to a Map
Image data is handled using the AGG class. Images may have one or more layers, and
the brightness and colour sequence of layers may be altered using the AGG class
functions. Below is an example, adapted from the GRIDIMG1 GX, of how to place
an image of a grid into a map. Remember that the grid name requires whatever file
type decorations are necessary to identify its format for the call to LayerIMG_AGG.
(See the FEDIT examples in the GRC Resources and Dialogs section of Part 1.)

68 Part 2 - Working with GX Developer

// --- create aggregate ---

Agg = Create_AGG();

// --- add grid to the AGG ---

Progress_SYS(1);
ProgName_SYS("Layer",1);
LayerIMG_AGG(Agg,sGrid,0,sColor,rDUMMY);
Progress_SYS(0);

// --- open the current data view ---

View = Create_MVIEW(Map,"*Data",MVIEW_WRITEOLD);

// --- create a group name for the AGG, using the grid name without decorations ---

Strcpy_STR(sAgg,"AGG_");
FileNamePart_STR(sGrid,sGrid,STR_FILE_PART_NAME);
ToLower_STR(sGrid);
Strcat_STR(sAgg,sGrid);

// --- put the AGG in the view ---

Aggregate_MVIEW(View,Agg,sAgg);

Clipping Objects in a View
Each view contains a “poly-polygon” object (PLY) which specifies the area or areas
where plotting is to occur. Initially, when a view is created, this PLY is not defined
and no clipping occurs. Both inclusive and exclusive PLY objects can be created (and
individual polygons in the PLY object can be of either type). Once a clipping PLY is
added to the view, clipping can be turned on or off for individual groups within the
view. Whether clipping is applied to a new group when it is created can be controlled
using the GroupClipMode_MVIEW function. The following is an example, adapted
from the TINVORONOI GX, of how a clipping region is defined and added to a
view, and how the clipping may be applied to a group. In this case, the Voronoi cells
of a Triangular Irregular Network (TIN) are plotted, and the user can specify whether
to clip the cells to the outside boundary (convex hull) of the nodes:

// --- Get the Voronoi Cell edges (returned as line segments) ---

VVv = Create_VV(-32,0); // sizeof(GS_D2LINE)
GetVoronoiEdges_TIN(Tin, VVv);

// --- Get the Convex Hull ---

Ply = Create_PLY();
GetConvexHull_TIN(Tin, Ply);

VVx = CreateExt_VV(GS_DOUBLE, 0);
VVy = CreateExt_VV(GS_DOUBLE, 0);

GetPolygon_PLY(Ply, VVx, VVy, 0);

Part 2 - Working with GX Developer 69

// --- open the data view ---

View = Create_MVIEW(Map,"*Data",MVIEW_WRITEOLD);

Progress_SYS(1);

if(iClip) GroupClipMode_MVIEW(View, CLIP_ON);

// --- create path group ---

StartGroup_MVIEW(View,"Voronoi_Cells",MVIEW_GROUP_NEW);

// --- set line characteristics ---

LineColor_MVIEW(View,iColor_MVIEW(sLineColor));
LineThick_MVIEW(View,rThickness*rScale);
LineStyle_MVIEW(View,0,0.0);

// --- Set the view’s clipping PLY ---

if(iClip) SetClipPLY_MVIEW(View, Ply);

// --- Plot the Voronoi Cells ---

LineVV_MVIEW(View, VVv);

// --- Turn off clipping for subsequent plotting ---

if(iClip) GroupClipMode_MVIEW(View, CLIP_OFF);

To set clipping for one or more groups that already exist, use the
MarkGroup_MVIEW function to select the groups, and then call the
ClipMarkedGroups_MVIEW function.

Version 6.0. introduced group based clipping that allows multiple clipping PLYs
masks to be added to a view. These masks are named by using a text description or
identifier and can be assigned to one or more groups in the view. The following
functions manipulates and sets this inside a view:

Function Description

iNumExtClipPLY_MVIEW Get the number of extended clip PLY objects in
a view

ExtClipPLYList_MVIEW Get the names of existing extended clip PLY
objects in a view as list

GetNameExtClipPLY_MVIEW Get the name of the extended clip PLY object
in a view.

70 Part 2 - Working with GX Developer

GetExtClipPLY_MVIEW Get an extended clip PLY object used by a
view.

iSetExtClipPLY_MVIEW Set an extended clip PLY object used by a
view.

DeleteExtClipPLY_MVIEW Deletes an extended clip PLY object used by a
view.

SetGroupExtClipPLY_MVIEW Sets extended clip information for group in a
view.

GetGroupExtClipPLY_MVIEW Gets extended clip information for group in a
view.

Creating a Maker
A “maker” is information added to the group, which allows the user to recreate the
group, using the same process which created it initially. For instance, the following
maker is created in the POST GX:

Maker_MVIEW(View,1,1,"POST",MAKER_GX,"Posting...","POST;");

This maker indicates that both a map and database are required, that the POST GX
was run, and that the “POST” settings from the workspace parameter block are
required. When the user selects this group and brings up the right mouse-button
menu, the item “Posting...” appears at the bottom, and by selecting it the POST GX
will be run again, allowing the user to alter settings.

Working with 3D Views
A 3D View represents a 3D coordinate system and were introduced in version 5.1.2.
3D views may contain one or more drawing “planes”, on which normal 2D drawing
can take place. A drawing plane represents a 2D coordinate system oriented in the
3D space of the 3D view. The drawing plane surface may be flat, or it may have
relief defined by grid, which defined the relief in the plane’s Z axis direction.

3D views are created from 2D views by providing a 3D viewing object called an
3DN. To create a 3D view, first create a 2D view, establish the 2D coordinate system
of the view (this will represent the X,Y axis of the 3D coordinate system), create a
3DN that defines the starting 3D viewing parameters, and apply the 3DN to the view:

 // --- create and scale a 2D view ---

 View = Create_MVIEW(Map,s3DView,MVIEW_WRITENEW);
 TranScale_MVIEW(450000.0,6000000.0,10.0,10.0);

 // --- create a 3DN ---

Part 2 - Working with GX Developer 71

 h3DN = Create_3DN();
 SetPointOfView_3DN(h3DN,6.0,20.0,25.0);
 SetRenderControls_3DN(h3DN,TRUE,FALSE,”X”,”Y”,”Z”);

 // --- apply the 3DN to the 2D view ---

 SetH3DN_MVIEW(View,h3DN);

Now that the view is a 3D view, it must be located on the map using
FitMapWindow3D_MVIEW. By locating a 3D view on a map, we make the view
appear to be a 2D view for any functions that need to work with the view in 2D. For
example, a 3D view can be selected, moved and resized on a 2D map just like any
other 2D view.

In the following example, we have previously determined a location and data range
that we would like to fit. The data range is not really important, but we normally
choose a range that is similar to the X,Y range of the 3D view:

 // --- locate the 3D view on the map ---

 FitMapWindow_MVIEW(View,
 rMinX,rMinY,rMaxX,rMaxY,
 rDminX,rDminY,rDmaxX,rDmaxY);

Before drawing to the 3D view, we must create a drawing plane. It is then oriented
with respect to the 3D coordinate system by specifying:

1. The pitch (rotation around X), yaw (rotation around Y) and roll (rotation
around Z) of the new plane surface relative to the 3D coordinates system of
the 3D view.

2. The X, Y and Z offset of the plane origin relative to the origin of the 3D view.

3. The X, Y and Z axis scale of the plane surface relative to the Plane coordinate
system.

Examples:

 // --- Create an X-Y drawing plane on the X-Y axis of the view --
-

 iPlane = iCreatePlane_MVIEW(View,”X-Y”);
 SetPlaneEquation_MVIEW(View,iPlane,
 0.0,0.0,0.0, // no rotation
 0.0,0.0,0.0, // no offset
 1.0,1.0,1.0); // unit scaling

72 Part 2 - Working with GX Developer

 // --- Create an Y-Z drawing plane offset 100 units in X ---

 iPlane = iCreatePlane_MVIEW(View,”Y-Z”);
 SetPlaneEquation_MVIEW(View,iPlane,
 0.0,90.0,0.0, // Y-Z plane
 100.0,0.0,0.0, // offset 100 units in X
 1.0,1.0,1.0); // unit scaling

If you would like the plane to have a relief surface, this can be established from any
grid file that registers within the plane 2D coordinate system. You specify the grid
file, then the relief parameters:

 // --- use an SDTS DEM to define surface relief ---

 SetPlaneSurface_MVIEW(View,iPlane,”topo.sdt(SDT)”);

 // ---
 // Apply 2x vertical exaggeration and remove 150m base. Sample
 // the grid to produce a 400x400 resolution relief surface.
 // ---

 SetPlaneSurfInfo_MVIEW(View,iPlane,400,
 150.0,2.0,rDUMMY,rDUMMY);

Now you can create new groups and draw to this plane using the normal 2D drawing
commands in MVIEW. Anything that can be drawn on normal 2D view can be
drawn on a plane in a 3D view.

Termination and Error Handling
With normal execution of a GX, no explicit termination statement is required. The
process proceeds to the last executed statement in the main program block. A number
of cases exist, however, perhaps due to errors in execution, unexpected parameter
values, or user intervention, when the GX must terminate prematurely. Several
functions exist to handle the various scenarios:

The Exit_SYS function
The Exit_SYS function is a “soft landing” early exit. Execution ceases as if it were
the end of the GX, and no message is written to the user or log file. No error is
registered, so if the GX has been called from another GX, the calling GX will proceed
normally.

The Cancel_SYS function
The Cancel_SYS function is normally used in response to a user selecting the
“Cancel” (or corner “X” button) in a dialog. No message is output, and, if this GX is
called from another GX a value of 1 will be returned to the calling GX, which should
be handled as necessary (See Calling GXs from within a GX below), usually with its
own call to Cancel_SYS.

Part 2 - Working with GX Developer 73

The Abort_SYS function
The Abort_SYS function terminates the GX with a message. It is normally used in
the non-interactive section of a GX when a bad or missing parameter is detected, and
the GX may not safely continue. A call to Abort_SYS terminates not only the
current GX, but any GXs which happen to have called the current GX.

Messages and Warnings to Users
Within interactive sections of the GX it is possible, through careful design, to “trap”
bad or missing parameter values, or unusual conditions, and alert the user, without
terminating the GX with a call to one of the above three functions. One method is to
enclose the interactive portion of the GX within a while(){} statement, and break out
of the loop only when all necessary conditions have been met. A
DisplayMessage_SYS (or DisplayInt_SYS or DisplayReal_SYS)
message can be used to alert the user. Once the user reads the message and selects the
“Ok” button, the dialog comes up again so the value can be altered. The following is
an example:

if(iInteractive_SYS()) {
 iDone = 0;
 while(iDone!=1) {

 // --- Do dialog stuff here ...
 .
 .
 .

 // --- Retrieve and validate a variable ---

 GetReal_SYS("MYGX","MYPARAM",rVal);

 if(rVal<=0.0)
 DisplayMessage_SYS("Bad value: MYPARAM", "Must be > 0.0");
 else
 iDone = 1; // A “break;” statement would also work
 }
}

Using Progress Indicators
For processes that may take a long time to complete, it is important to provide
feedback to the user about the current state of progress. The Progress_SYS
functions are designed to create a progress bar with a message and “Stop” button to
allow premature termination of the process. The following example illustrates the
various aspects of setting up a progress indicator:

• The progress bar shows the percentage of the process which has been completed.
To calculate the percentage requires that some progress variable be defined.
Often, this is the number of selected lines in a multi-line database. Alternatively,
it could be the number of rows in a single line of data.

74 Part 2 - Working with GX Developer

iLines = 0;
iTotLines = iCountSelLines_DB(Data);

• Turn on the progress indicators. Many Geosoft functions contain their own
progress reporting capabilities, which are normally disabled. Calling
Progress_SYS(1) activates not only the progress indicators for the current GX, but
for the called functions as well.

Progress_SYS(1);

• Set a progress name. This may be done once, or may be changed on each update
of the progress indicator. In this case it will be changed with every line. This call,
without a name, is used to set the initial indicated percentage to 0.

ProgName_SYS("",1);

• Update the progress bar within the process loop. The message is changed to
reflected the current line, without affecting the displayed percentage. The
iCheckStop_SYS function allow the user to break prematurely from the
process.

// --- Go through all selected Lines ---

Line = FirstSelLine_DB(Data);
while (iIsLineValid_DB(Data,Line))
{
 // --- Update the Progress Bar ---

 LockSymb_DB(Data,Line,DB_LOCK_READONLY,DB_WAIT_INFINITY);
 GetSymbName_DB(Data,Line,sTemp);
 UnLockSymb_DB(Data,Line);
 Strcpy_STR(sLabel, "Copy line: ");
 Strcat_STR(sLabel,sTemp);
 ProgName_SYS(sLabel,0);
 ProgUpdate_SYS((int) ((real) iLines / (real) iTotLines *
100.0));

 // --- Allow user a premature exit ---

 if(iCheckStop_SYS()) Cancel_SYS();

 // --- Do processing ...
 .
 .
 .

 // --- Advance to the next line ---

 Line = NextSelLine_DB(Data, Line);
 iLines++; // increment a counter for the progress bar
}

Part 2 - Working with GX Developer 75

// --- Set the progress indicator to 100% ---

ProgUpdate_SYS(100.0);

• Finally, after all processing function calls, turn off the progress indicator

Progress_SYS(0);

Creating a “Wizard” GX
A “wizard” is a GX that uses a series of dialogs, often with different branches
depending on selected parameters. Examples include the NEWMAP GX, for creating
a new map, and IPJSET GX, for defining projections. It is even possible to call one
wizard from another (as NEWMAP calls IPJSET). Wizard dialogs generally have
“Back” and “Next” buttons, except for the last dialog, which usually has “Back” and
“Finish” buttons. Control may terminate with the last dialog in the series, or be
returned to the first dialog. The following is an outline of a simple wizard with two
subdialogs, with control returned to the main dialog on completion. There is an
“Options” button in the main dialog, which begins the wizard.

• Set up some predefined values before the main code block; ensure that the buttons
in the resource file contain the same values.

#define BACK 0
#define NEXT 1
#define FINISH 2
#define OPTIONS 1

#define DONE 99
#define MAIN_FORM 100
#define WIZARD1_FORM 101
#define WIZARD2_FORM 102

• Put the following “while” structure within the interactive block. The “//--- Set
info...” and “//--- Get info...” comments indicate code that has been removed for
the sake of brevity.

i = MAIN_FORM;
while (i != DONE) {

 switch (i) {

 case MAIN_FORM: // Main Dialog has “Ok” and “Options” buttons

 Diag = Create_DGW("MAIN");

 // --- Set info....

 iD = iRunDialogue_DGW(Diag);
 if (iD == -1) Cancel_SYS();

 // --- Get Info...

 Destroy_DGW(Diag);

76 Part 2 - Working with GX Developer

 if(iD==0)
 i = DONE;
 else if(iD==OPTIONS)
 i = WIZARD1_FORM;

 break;

 case WIZARD1_FORM: // Wizard 1 has “Back” and “Next” buttons

 Diag = Create_DGW("MAIN");

 // --- Set info...

 iD = iRunDialogue_DGW(Diag);
 if(iD == -1) {
 i = MAIN_FORM;
 break;
 }

 // --- Get Info...

 Destroy_DGW(Diag);

 if(iD==BACK)
 i = MAIN_FORM;
 else if(iD==NEXT)
 i = WIZARD2_FORM;

 break;

 case WIZARD2_FORM: // Wizard 2 has “Back” and “Finish” buttons

 Diag = Create_DGW("MAIN");

 // --- Set info....

 iD = iRunDialogue_DGW(Diag);
 if(iD == -1) {
 i = MAIN_FORM;
 break;
 }

 // --- Get Info...

 Destroy_DGW(Diag);

 if(iD==BACK)
 i = WIZARD1_FORM;
 else if(iD==FINISH)
 i = MAIN;

 break;

 case default:

Part 2 - Working with GX Developer 77

 Abort_SYS(“I’m lost”);

} // end while(i!=DONE)

• Note that the “Cancel” return from the wizard dialogs returns control to the
MAIN form, instead of exiting directly with a Cancel_SYS call. Breaking
before the “Set info” commands ensures that no changes are made when the
dialog is cancelled out of. Changes made by previous dialogs within the wizard
are retained, however.

Calling GXs from within a GX
Occasionally it is necessary to call one GX from another, using the iRunGX_SYS
function. This can eliminate the need to write additional code, and promotes
standardization of methods.

For example, many processes, such as those that import data, may require a new
database or ask the user whether or not to overwrite the current database. The
following code fragment (from the IMPASC GX) performs this function:

// --- Get OASIS Database ---

if (iHaveCurrent_EDB() && iInteractive_SYS()) {

 if (DisplayQuestion_SYS("Import ASCII","Import data into the
current database ?")==0)
 {
 if (iRunGX_SYS("create.gx")) Cancel_SYS();
 }

} else {
 if (iRunGX_SYS("create.gx")) Cancel_SYS();
}

// --- get database ---

EData = Current_EDB();
Data = Lock_EDB(EData);

Several important points should be noted:

• Databases cannot be doubly locked. If the called GX uses Current_EDB and
Lock_EDB to obtain the DB database handle, be sure that the calling GX has
freed its own DB handle with a call to Unlock_EDB. For the same reason, it is
important that databases always be released after having been locked.

// --- Get database ---

Edata = Current_EDB();
Data = Lock_EDB(Edata);

// --- Access data using the DB handle “Data”

78 Part 2 - Working with GX Developer

.

.

.

// --- Release the database ---

UnLock_EDB(Edata);

// --- Call the GX ---

iRunGX_SYS(“AnotherGX”);

// --- Lock the database again, and continue ---

Data = Lock_EDB(Edata);

• The iRunGX_SYS function returns 0 if it completes without an error. If an error
occurs, or if the user has “cancelled” out, a value of 1 is returned, and it may be
necessary to handle this. The following code queries the database to get the
current range of X and Y values, then creates a new map based on the range. If
any error occurs, the Cancel_SYS function is called to terminate execution of
the GX.

if (iRunGX_SYS("xyrange.gx")) Cancel_SYS();
if (iRunGX_SYS("newmap.gx")) Cancel_SYS();

• Sometimes it is necessary to call a GX non-interactively. In this case it is
important that the called GXs parameters have been correctly set before it is
called. To call a GX non-interactively, turn off the interactive mode as in the
following example:

// --- turn off interactive mode ---

SetInteractive_SYS(0); // 0 - interactive off

// --- call a GX non-interactively ---

if (iRunGX_SYS("mygx1.gx")) Cancel_SYS();

// --- restore interactive mode ---

SetInteractive_SYS(1); // 1 - interactive on

// --- call a GX interactively ---

if (iRunGX_SYS("mygx2.gx")) Cancel_SYS();

Of course, if this GX were run in batch mode, the SetInteractive_SYS
command would have no effect, and both called GXs would be run non-interactively,
as would the calling GX.

Part 2 - Working with GX Developer 79

The following is a brief list of commonly called GXs, the GXs that call them, and a
brief explanation of the purpose of the call.

Called GX Example Calling GX Purpose

CREATE IMPASC Create a new database.

RANGEDB NEWMAP Determine X, Y range of a database

IMGRANGE NEWMAP Determine X, Y range of a grid

DEFMAP GRIDIMG1 Create a new map with no scale

SCLMAP POST Define a scale for a map with no scale

IPJSET NEWMAP Set up a map projection

Preparing your GX to run as a Script
Some GXs cannot be run from a script. These include those that call GUI elements
such as the histogram tool, or the colour symbol tool. Most, however, can be recorded
and run successfully in a batch mode, provided that the suggested program flow
outline is adhered to. In particular, the following points are important:

• Keep interactive elements sequestered from the processing code by using the “if
(iInteractive_SYS()” statement.

• Keep non-scripting style functions (EDB,EMAP) sequestered from scriptable
code by using the “if (iScripting_SYS()” statement.

• Make use of the workspace parameter block to store required values. The
SetInfoSYS_DGW and GetInfoSYS_DGW functions use the workspace
parameter block, so once the GX is run once interactively the required parameters
are set. The parameters are retrieved using the GetString_SYS,
GetReal_SYS and GetInt_SYS functions.

• Ensure that the parameters are properly checked and verified, as an aid in
debugging and running the GX.

Compilation and Debugging
The sections to follow discuss the following compilation and debugging topics.

• Command Line Compilation
• Debugging tips and suggestions

Command-Line Compilation
The following GX.BAT is a simple command-line batch file, which may be used to
compile your GX. It compiles the resource (.GRC) file first, the source (.GXC) file. It
assumes that both the resource compiler (GRC.EXE) and the source compiler
(GXC.EXE) are in the user’s environment path, and that the user’s Geosoft directory
is c:\Geosoft.

@if exist %1.grc grc %1

80 Part 2 - Working with GX Developer

gxc %1
copy *.gx c:\Geosoft

It may be run from the command line using the following syntax: gx mygx

Debugging Tips and Suggestions
The following are some last-minute tips from our GX developers. When fixing errors
in GXs, we recommend:

ENABLE ALL ERRORS

When testing GXs in Oasis montaj, select the “Edit|Oasis montaj Settings” menu
item, and set the “Error report level” to “All errors”. Your GX may fail during testing,
and not all errors are always reported to the user. Setting “All errors” ensures that you
can view the reason for any premature stoppage.

REUSE HANDLES WITH CAUTION

Watch out for reuse of handles to created objects. Anything you create with a call of
the form “Create_...” sets aside storage for the handle and a “Destroy_...”
call releases that storage.

But before you reference that handle again, you must reinitialise it to NULL. This
avoids bugs associated with trying to use a handle to something that no longer exists!

For instance, if you have code similar to the following:

hVV = Create_VV(real,10);
i = iLength_VV(VV);
Destroy_VV(hVV);
.
.
if (hVV) Destroy_VV(hVV);

You will see an error because the hVV handle still has a value. To resolve this
situation, change the code to the following:

hVV = Create_VV(real,10);
i = iLength_VV(VV);
Destroy_VV(hVV);
hVV = NULL; .
.
.
if (hVV) Destroy_VV(hVV);

Setting the hVV handle to NULL solves the problem for you!

TRACK VARIABLE VALUES WITH DISPLAYXXX_SYS

Whenever you need to determine the value of a variable, you can use the
DisplayXXX_SYS functions: DisplayMessage_SYS, DisplayInt_SYS,
and DisplayReal_SYS. You can do this before and after function calls, as shown
below, to track how a value changes:

Part 2 - Working with GX Developer 81

DisplayInt_SYS(“iResult before”,iResult); // Display the value
iResult = iN + iM; // Set value somehow
DisplayInt_SYS(“iResult after”,iResult); // Display the value

RETRIEVE THE CORRECT VALUES AND SPELL CAREFULLY

When you retrieve values from a dialog box, always make sure that the parameters
match the dialog element it is supposed to get the value from.

Also, make sure that the parameter label is spelled correctly. It is legal to try to get
values for a parameter which has not been explicitly defined in the workspace
parameter list, so if you put a value into a misspelled parameter, the parameter you
meant to change will NOT be changed. If you try to obtain a value from a non-
existant variable using one of the GetXXX_SYS functions, the returned value will be
either an empty string, or the real or integer dummy values (the same as if the
variable exists, but is not defined).

82 Part 3 – GX Function Libraries

Part 3 – GX Function Libraries
The classes and functions in the GX API have been documented in the
GXDeveloper.chm help file. This documentation is generated from our existing GXH
files and compiled into HTML. This information is also available online at:
http://www.geosoft.com/support/devtools/

Classes and Handles
Oasis montaj is an object-oriented system, and GX Developer is an object-oriented
development environment. Most of the functionality in the system requires the
creation of instances of a class, then manipulation of that instance through calling
class methods. For example, the VV class deals with arrays of data, and the various
methods in VV class (described in VV.GXH) allow you to work with data arrays.

In order to work with a class, a handle to the class must be obtained. Some objects,
(such as databases, lines, channels, and maps) may already exist, and functions exists
(such as Current_EDB and Lock_EDB) to return their handles. Other objects, such as
the DGW dialog object, or the very large vector VV object, must be newly created,
and have a Create_XXX() function, where XXX is the class name (e.g. Create_VV
creates an instance of the VV class). The Create function returns an Object Handle,
which can be used in class methods. Class methods are described in GXH files that
bear the class name (VV.GXH describes all VV methods, and VVU describes VV
utility methods). An Object Handle is always a long (32-bit) integer - it is not a
pointer. An Object Handle is always passed to a class method by reference, just like
any other argument to the method.

An instance of a class created within the GX should be destroyed when it is no longer
required, and always before exiting your program. The Destroy_SYS method can
destroy any class instance, and each class also has a Destroy_XXX method (e.g.
Destroy_VV(hVV) destroys the hVV instance of a VV class).

Methods libraries are typically collections of functions with similar purposes that may
require one or more class objects. Although they also carry “_XXX” tags, there is no
“hXXX” instance to create (though most require at least one instance of a particular
class as an argument).

Geosoft Licensing Issues
All methods available through the GX interface fall under one of the license classes
below:

Type Description

Public Available with the free Viewer, the GX Developer interface. No
licenses are needed at all to access this method. Note, that some
methods are public but offer reduced functionality.

Licensed These methods require Oasis montaj to be installed and licensed.

http://www.geosoft.com/support/devtools/�

Part 3 – GX Function Libraries 83

As long as base Oasis montaj license is available these methods
will work.

Extended These methods require specific licenses to execute. Since the
license structure that enables these methods is dynamic it is
recommended that GX Developers not use Extended methods.

Also, to protect against malicious code and viruses, Geosoft has instituted a Signed
GX system. All GX’s compiled by Geosoft are signed and will only execute if they
have been licensed for execution on your system. If a signed GX is modified in any
way it will not longer be considered safe code and will not execute.

Oasis montaj users can still execute unsigned GX’s but a warning will appear
indicating that this GX was not signed and asking the user to:

 Run Once (Run the GX but only this time)

 Run Always (Store the GX’s signature and always allow that GX to run)

 Deny (Do not execute this GX at all)

At this time, only members of the Geosoft Partners program can have their GX’s
signed by Geosoft.

VIEWGX – License Analysis
To help GX developers determine under what licenses their GX will execute, the
VIEWGX program has been upgraded to a license analysis of a GX. To view this
analysis run:

 VIEWGX –l MyGX.GX

This will produce a listing of licenses that this GX will run under:

This GX will execute with the following licenses:

 10000 Oasis montaj™ Mapping and Processing System
 10100 montaj™ Geophysics
 10101 montaj™ Chimera Geochemistry
 10102 montaj™ Drillhole Plotting
 10103 montaj™ Induced Polarization
 10104 montaj™ Geophysics Leveling
 10105 montaj™ MAGMAP Filtering
 10106 montaj™ Grav/Mag Interpretation
 10107 montaj™ Airborne Quality Control
 10108 montaj™ 256-Channel Radiometric Processing
 10109 montaj™ Gravity and Terrain Correction
 10110 montaj™ Gridknit
 10111 montaj™ UX-Detect
 10200 montaj™ DAP Administrator
 10500 montaj plus™ Modeling Lite
 10520 montaj plus™ GMSYS Basic Profile Modeling
 10521 montaj plus™ GMSYS Intermediate Profile Modeling
 10522 montaj plus™ GMSYS Advanced Profile Modeling
 10523 montaj plus™ Modeling 3D

84 Part 3 – GX Function Libraries

 10524 montaj plus™ Depth To Basement
 10525 montaj plus™ Isostatic Residual
 10540 montaj plus™ Grav/Mag Filtering
 10541 montaj plus™ Compudrape
 30000 Target™ Surface and Drillhole Mapping
 30101 Target™ Chimera™ Geochemical QA and Analysis

If a more detailed analysis is required, the –L options can be used to produce output
as follows:

This GX will execute with the following licenses:

 0 Public License

 missing Wrapper [Create_BIGRID] Marble
 missing Wrapper [Destroy_BIGRID] Marble
 missing Wrapper [iLoadParms_BIGRID] Marble
 missing Wrapper [Run_BIGRID] Marble

 10000 Oasis montaj™ Mapping and Processing System

 OK

 10100 montaj™ Geophysics

 OK

 10101 montaj™ Chimera Geochemistry

 OK

 10102 montaj™ Drillhole Plotting

 OK

 10103 montaj™ Induced Polarization

 OK

 10104 montaj™ Geophysics Leveling

 OK

 10105 montaj™ MAGMAP Filtering

 OK

 10106 montaj™ Grav/Mag Interpretation

 OK

 10107 montaj™ Airborne Quality Control

 OK

Part 3 – GX Function Libraries 85

 10108 montaj™ 256-Channel Radiometric Processing

 OK

 10109 montaj™ Gravity and Terrain Correction

 OK

 10110 montaj™ Gridknit

 OK

 10111 montaj™ UX-Detect

 OK

 10200 montaj™ DAP Administrator

 OK

 10500 montaj plus™ Modeling Lite

 OK

 10520 montaj plus™ GMSYS Basic Profile Modeling

 OK

 10521 montaj plus™ GMSYS Intermediate Profile Modeling

 OK

 10522 montaj plus™ GMSYS Advanced Profile Modeling

 OK

 10523 montaj plus™ Modeling 3D

 OK

 10524 montaj plus™ Depth To Basement

 OK

 10525 montaj plus™ Isostatic Residual

 OK

 10540 montaj plus™ Grav/Mag Filtering

 OK

 10541 montaj plus™ Compudrape

 OK

 30000 Target™ Surface and Drillhole Mapping

86 Part 3 – GX Function Libraries

 OK

 30101 Target™ Chimera™ Geochemical QA and Analysis

 OK

Each general license supported by Geosoft will be listed along with either “OK” or
the reasons this GX will not execute under this license. This program can be very
useful in determining what licenses will be required to run your GX. Note that the
license tables can and do change between versions so the 6.0 version of VIEWGX is
only accurate for the 6.0 version.

Part 4 – GX Debugger 87

Part 4 – GX Debugger
As of Oasis montaj version 5.1.8, the GX Developer is endowed with a debugger,
modelled after the general style of Microsoft’s Visual Studio. Although the GX
debugger does not offer the full range of the Visual Studio functionalities, it is a
flexible and well adequate tool for debugging GXs, and will tremendously speed up
your development.

By enabling the debugger on a GX, the user can step at run-time through the GXC
code of the GX. The user may place break points in the code, and search for strings.
Furthermore, this process gives the user access to the memory stack as well as the
ability to modify the stack at run-time. The illustration below displays a typical GX
debugger session. If you are familiar with Microsoft’s Visual Studio or a similar
development environment, you will easily adapt to using this debugger.

To enable the GX Debugger, first load the menu “Debug” from the list of Oasis
montaj menus. This menu offers two GXs:

88 Part 4 – GX Debugger

• DBGEnable.gx: enables the debugging of the specificied GX, and

• DBGDisable.gx: turns off the debugger of the specificied GX.

DBGEnabled prompt the user for a directory name, and scans it to find all GXC
source files under its directory tree. These are the files that will be available for
viewing and debugging in the debugger interface. The second prompt determines the
name of the GX in which to place the first break. The next time the user runs directly
or indirectly thisGX, the process will realise the GX Debugger process, and stop at
the first execution line of the GX. If the specified GX is not found, the user is given
an appropriate message, and is placed back in the GX Debugger dialogue.
DBGDisable simply removes the ability to break at the first line of the first GX.

Usage
The illustration below displays the various parts of the GX Debugger.

The toolbar consists of the Debug menu, and the Help menu.

Part 4 – GX Debugger 89

1 - The Help menu displays a summarized version of the GX Debugger usage.

2 - The Debug menu enable the user to toggle (F9) on/off break points in the source
code, continue (F5) to the next break point, or proceed (F10) at the rate of one
execution line at a time. These short keys are the same as the Visual studio keys.

3 – The Gutter displays the line numbers, breakpoints and the current line of
execution.

4 – The user can set/unset Breakpoints at the current cursor position by hitting F9. A
brown circle identifies the breakpoints in the gutter. The debugger allows you to set
breakpoint on any line in any of the files preloaded into the file list. Many lines do not
actually contain any execution code and the debugger will skip over break points in
these lines even if you set a breakpoint on them. Problems also arise on multi-line
statements where the breakpoint will only be caught if set on the last line of the GX.

5 – A yellow arrow indicates the Current line of execution. If no such symbol exists
in the file you are currently viewing, the current position of the GX execution is
elsewhere in one of the other files in the File List. When you press F9.

6 – The Watch Window contains four tabs where you can add watches to variables in
the debugged GX’s. Add a watch by typing the variable’s name in the Name column.
If a variable is not in the current scope, it won’t be displayed. The size of strings and
arrays are indicated in parentheses following the variable name. The second column
(Value) contains the values of the watch variables. In the case of string, int and real
variables you will be able to edit the values before stepping to the next line of
execution or continuing the GX run. Object handles are treated differently. The
numeric value of the objects handle is shown in square braces. When a handler for an
object exists (at the moment only IPJ, PLY and META is supported) a double click on
the handle value will pop up an editor or viewer for the object. In some cases, only a
simple string representation will be presented in a read only text box (currently the
case for IPJ and PLY), and in other cases a full-fledged editor will be started (META
is a good example).

7 – All the files found underneath the directory you specified to the DBGENABLE
GX will be displayed in the File list. You can view the source code of any file in the
list by double clicking on it.

8 – The Breakpoint list shows all the breakpoints active in the session. Double
clicking on these will take you to the location in the source code.

9 – The Source Code displays the colorized source code of one of the files in you File
List. The colourized scheme follows the Visual Studio standards.

Notes
There are dividers between the different parts of the debugger window that allow the
resizing of the parts to individual preference. The whole window can also be resized.
The positions will be remembered for the duration of the debugging session.

The watch windows are not the only way to inspect variables’ values. If you hover
over a variable in the source code, a tool tip will pop up displaying its value.

90 Part 4 – GX Debugger

When stepping (F10) to the next line of execution, and the GX is terminated, the
debugger will retain the stepping mode. This means as soon as on of the GX’s in the
file list is run the debugger will pop up and display the current line of execution at the
first executing line in that file. Another handy feature of stepping is that you may
‘step into’ GX’s in your file list by hitting F10 on a iRunGX_SYS call to such a GX.

Currently there is no checking for consistency between the GX binaries and the
source code. If an outdated binary is used with newer source code, the breakpoints
and source window may display wrong information and can cause confusing
situations. For example, a blank line may be the current line of execution or none of
your breakpoints will stop the execution of the GX. In this eventuality stop the
process, reload the GX to debug, and run it again.

Dummy values will always be shown as an asterix character ‘*’. Similarly, you can
change a numeric value of a variable to a dummy by typing an asterix in the Values
column.

A specific element in the array may be indicated using square braces containing the 0-
based index into the array. When you attempt to view an array by typing its name in
the Name column it will show the first element (VariableName[0]) in it. The
alternative is to hover over the variable in the source code window; the tool tip will
display the entire array.

Part 5 – Working with other languages 91

Part 5 – Working with other languages
Other Language Support
The GX Developer environment also provides an API for accessing Geosoft
technologies from other programming languages. This allows the creation of DLL’s
that can run inside Oasis montaj and interact with the system through the same
interface that GX’s do. Other languages can also be used to produce external
applications (see Part 6 - Using the GX API Externally).

Oasis montaj 6.0 installs all necessary components needed to run other language
applications from GX’s. No additional software is needed. Other language DLL’s will
run under the Oasis montaj Viewer and Oasis montaj without modification.

Oppi applications are usually placed in the <geosoft>\bin directory but can be placed
in a different location if desired. A registry setting is required to locate each DLL
that is not placed in the <geosoft>\bin directory. Add the following registry key to
the system running the application:

HKEY_LOCAL_MACHINE\SOFTWARE\Geosoft\{KEY}\3rdPartyDLLs.

The {KEY} is the version of oasis montaj that will be running. In the standard Oasis
montaj version this key is “Oasis montaj” and for the Viewer it is “Oasis montaj
Viewer”. However, some special versions of montaj for our CS customers do have
unique key names.

Once this key is created, populate it with the names of each DLL needing to be
redirected to a different location. For example, if a custom GX called a method in my
geocustom.dll file installed in c:\program files\custom, I would create a new string in
the registry:

 Name: geocustom.dll

Data: <Program Files>\custom\geocustom.dll

The first time your GX is run, montaj will try to load the DLL from <geosoft>\bin
first. If it is not found there, it will check this registry setting for any matches of the
DLL name and load it from the specified path instead. Until montaj has been
restarted, the DLL will always be loaded from the alternate location.

C Programmer Support
Introduction
This section describes how to call GX functions in Oasis montaj from external DLLs
that have been called from a GX, and from stand-alone external 32-bit Windows
programs using the External API.

External applications and GX Developers access Geosoft data processing DLLs
through the GX API (Application Programming Interface). This interface performs
thorough parameter checking and passes calls on to the appropriate processing DLL.

92 Part 5 – Working with other languages

Programmers using this interface must be experienced in using their own C
programming environment. Oasis montaj 6.0 was developed using Microsoft Visual
Studio .NET 2005, and the sample programs are supplied with Microsoft compatible
make files and library files. Programmers using other development environments
must modify their environment somewhat to address their own situation.

Installation
The GX Developer installation already contains all that is required to build other
language DLL’s and external applications. The following are the directories:

apps\lib\geogx.lib This is the main library file that contains all functions in
the GX Developer. This library files should be included
in your list of link libraries.

apps\lib\geodist.lib This library is required for external applications. It
provides the very small set of methods in the External API
(see Part 6).

apps\include C Header files:

gx_lib.h C header file for all GX functions in the
current release. This header file is only
for the purpose of providing prototypes to
C compilers. The original GXH files
(gxdev\gxh*.gxh) should be referred to
for information on actual function usage.
Note that there are both standard calling
convention (GX_STANDARD_FUNC)
and C calling convention
(GX_WRAPPER_FUNC) wrappers for
every function. C programmers should
use the GX_WRAPPER_FUNC functions.

gx_define.h #define statements for all defined
constants in the GX Developer GXH
files. These are for use in your programs,
but the original GXH files should be used
to obtain information on usage. If the
constant definitions conflict with
definitions used in your programs you
should not include this file and instead use
the explicit form of the constants.

gx_extern.h C header file includes functions to create
and destroy the GX Object Pointer, and
display or retrieve error message. These
functions are required by stand-alone
programs.

Part 5 – Working with other languages 93

apps\examples\c C Application Examples:

gridstat Console program to compute grid
statistics.

gridcopy Console program to copy/convert grids
using IMG class interface.

chanadd Console program to add a value to a
database channel.

chanstd Identical to chanadd but uses the “stdcall”
function interface.

callfunc A sample DLL that is called from a GX
running under Oasis montaj.

licensecheck Console program to detect if a license is
present. Works in conjunction with Oasis
montaj.

OMScript GUI program that can execute GS Scripts
and GX’s in GUI mode.

apps\examples\CSharp C# Samples using the new .NET interface:

chanadd Console program to copy/convert grids
using IMG class interface. (C# version).

OMScript GUI program that can execute GS Scripts
and GX’s in GUI mode (C# version).

Compilation Environment
If working with Visual Studio .NET, setting up your compilation environment
requires the following:

1. Add the <Program Files>\Geosoft\GX Developer\apps\include directory to the
list of include directories.

2. Add the <Program Files>\Geosoft\GX Developer\apps\lib directory to the list of
library directories.

3. Add one of the the geogx[_xxxx].lib file to the list of link libraries. If you will be
calling GX functions from other DLL (See API Interfaces for mor info on this).

4. If you are working in another environment, you must set up your system in a
similar way according to your own requirements. Also, it may be necessary to
modify the definition of certain values at the beginning of the gx_lib.h file that
will customize the prototype syntax to your own requirements.

94 Part 5 – Working with other languages

External Stand-Alone Applications
You can create separate programs completely independent of Oasis montaj. These
programs must create a handle to the Geosoft function libraries and use that handle in
all their calls. It is important to note that an external program may not be able to call
“app” functions (they begin with App_ in gx_lib.h). Although some of these methods
can be called externally they may not behave in the same way they do under Oasis
montaj.

Please note that all paths used below are relative to the main GX Developer
installation path:

<Program Files>\Geosoft\GX Developer

Refer to apps\examples\c\gridstat\gridstat.c for a simple example of a console
program that calls GX functions. The basic procedure is:

1. Declare a GX_OBJECT_PTR (GX Object Pointer) and any GX_HANDLE
variables that may be required for classes you will be using.

2. Create a GX Object Pointer by calling Create_GEO. You can only create one GX
object pointer in your application.

3. Call GX functions as required. The apps\include\gx_lib.h file provides the C
compiler prototypes. The documentation for the functions can be found in hlp\GX
Devloper.chm. Note that the C functions always take the GX Object Pointer
passed by value as the first argument. The GXH prototypes do not declare the
GX Object Pointer because it is implied.

4. Always check for errors immediately after calling a GX function. If an error
occurs, deal with the error.

5. Destroy the GX Object Pointer.

DLLs within Oasis montaj
To write a DLL that runs inside montaj, just set your compiler to build a DLL instead
of an EXE. It will also be necessary to create a GX that will call your DLL. When
your GX calls your DLL, the first argument will be the GX Object Pointer needed to
call all Geosoft functions.

Refer to apps\examples\c\callfunc\callfunc.c for a simple example of a DLL that is
called from a GX within Oasis montaj. The basic procedure is:

1. Create a DLL with functions with the first parameter as a void pointer and
returning a long (or double if it returns floating point) with the C calling
convention (see callfunc.c):

Part 5 – Working with other languages 95

// --- iSum_CALLFUNC ---

__declspec(dllexport)
long __cdecl iSum_CALLFUNC(// returns sum of two numbers
 GX_OBJECT_PTR pGeo, // geosoft handle
 const long *pl1, // first number
 const long *pl2) // second number
{
 return(*pl1 + *pl2);
}

// --- Sum_CALLFUNC ---

__declspec(dllexport)
void __cdecl Sum_CALLFUNC(
 GX_OBJECT_PTR pGeo, // geosoft handle
 const long *pl1, // first number
 const long *pl2, // second number
 long *plSum) // returned sum
{
 *plSum = *pl1 + *pl2;
}

// --- ChanBase_CALLFUNC ---

__declspec(dllexport)
void __cdecl ChanBase_CALLFUNC(// add two channels
 GX_OBJECT_PTR pGeo, // geosoft handle
 const long *phDB, // database handle
 const char *pcChan, // channel name
 const double *pdValue) // base value to add

{

2. Create a GX prototype of your DLL function placing the DLL name in brackets
so Oasis montaj will know where to find it (see callfunc.gxh):

96 Part 5 – Working with other languages

//--
// iSum_CALLFUNC Return the sum of two numbers

[callfunc] // name of the DLL
int iSum_CALLFUNC(int, // first number
 int); // second number

//--
// Sum_ADD_ Sum two numbers

[callfunc] // name of the DLL
void Sum_CALLFUNC(int, // first number
 int, // second number
 var int); // returned first+second.

//--
// ChanBase_CALLFUNC Add a base value to a named channel.

[callfunc] // name of the DLL
void ChanBase_CALLFUNC(
 DB, // database
 string, // channel name (must exist)
 real); // base value to add

3. Call the DLL function within your GX (see test1.gxc):

if (iSum_CALLFUNC(iVal1,iVal2) != 3)
 Abort_SYS("there is an error in iSum_CALLFUNC");

It is important to note that DLLs cannot call Create_GEO to make another GX Object
Pointer. Only one such object can exist in any application and any attempt to create
the object will abort the application.

In a DLL running inside montaj, the “app” functions are accessible. App functions
are those that control or use the Oasis montaj GUI and are indicated by the
[_public_app], [_licensed_app] or [_extended_app] identifier on the function
prototype in the *.gxh files, and by the prefix “App_” in the function names in
gx_lib.h.

Passing Arguments
All GX functions defined in GXH files require that the GX Object Pointer be passed
by value as the first argument. This is an implied argument that is not specified in the
GXH prototypes.

The only possible argument types (other than the GX Object Pointer) are:

long int (GX_LONG, 32 bits)

double (GX_DOUBLE, 64 bits)

strings (null terminated char arrays)

handle (GX_HANDLE, which is a long int)

Part 5 – Working with other languages 97

All arguments are passed by reference. This includes any required constants. To pass
an integer constant, use the _l() macro, which is defined in geoextern.h. To pass a
double constant, use the _d() macro. For example:

hImg = CreateFile_IMG(pGX,_l(GS_DOUBLE),”test.grd”);

Accessing Data
Data is either accessed by passing arguments through the GX functions, or with the
use of a VV or VA. Data in a database can also be modified using database functions
described in gx\include\du.gxh.

Before accessing data directly, you should try to find a function that will do exactly
what you want to do to the data. The best way to do this is to find an existing GX that
does almost what you are trying to do and see how it works. All GX source code is
included in the gx/src directory.

If you must access the data directly, the most common way is as follows:

1. Create a VV (or VA) class instance to hold the data:
 hVV = Create_VV(pGX,_l(REAL),_l(0));

2. Read data from a data source, either a database:
 GetChanVV_DB(pGX,&hDB,&hLine,&hChan,&hVV);
Or read data from a grid image:
 ReadX_IMG(pGX,&hIMG,&lX,_l(0),_l(0),&hVV);

3. Get a pointer to the data. This requires a VM class to hold the data:
 hVM = Create_VM(pGX,_l(REAL),_l(0));
 GetVM_VV(pGX,&hVV,&hVM,_l(0));
 pdData = GetMR_VM(pGX,&hVM);
The pdData is now a double pointer to the data.

4. Process the data (in this example, add 1000.0 to each value):
 lLen = iLength_VM(pGX,&hVM);
 for (l=0;l<lLen;l++) pdData[l] += 1000.0;

5. Put the data back in the VV:
 SetVM_VV(pGX,&hVV,&hVM,_l(0));

6. Put the VV back in the database:
 PutChanVV_DB(pGX,&hDB,&hLine,&hChan,&hVV);
Or write the data to a grid image:
 WriteX_IMG(pGX,&hIMG,&lX,_l(0),_l(0),&hVV);

7. Destroy each class instance (handles):
 Destroy_VV(pGX,hVV);
 Destroy_VM(pGX,hVM);

The ChanBase_CALLFUNC function in the apps\examples\c\callfunc\callfunc.c
provides a working example of how to do this.

A common question at this point is why have a VV and a VM? A VV is intended to
store very large arrays of data, and all VV methods are optimized to work efficiently
regardless of the array size. Even very large VV instances will only use a very small

98 Part 5 – Working with other languages

amount of system RAM, which allows OASIS to work with many VV instances at the
same time. A VM on the other hand actually allocates the required memory from the
operating system, and it will therefore only be efficient when the requirement fit
comfortably within the available RAM.

Error handling
If an error occurs in a GX function, the error condition is registered internally and the
method will fail. The only way to determine if an error occurred is to call the
iCheckError_SYS() function. If errors have occurred, you must deal with them.

In a stand-alone program, you can call ShowError_GEO() to directly display the error
or sGetError_GEO() to retrieve the errors one by one. In DLLs, you can call the
ShowError_SYS function (an App function) to display the error to the user.

GUI Applications
If your program is build using a GUI of some type and is not a Console application
we recommend you enable Geosoft GUI support by passing the hWND handle of the
main window of your program to the Create_GEO function. This will enable you to
call ShowError_GEO and see a GUI error message appear (as opposed to writing to
the console). It will also enable progress bar support when you use the
Progress_SYS() functions.

Licensing Issues
Functions that are not licensed to run on the computer at run time will produce an
error when the function is called. Note that this means a function may work on a
development computer that is licensed to use a particular function, but when it is run
on a user’s computer it will fail if that user is not licensed to use that function.

Calling Conventions
The GX Developer libraries are built using both the Microsoft C “_cdecl” calling
convention and standard calling conventions (Microsoft “_stdcall”), which is used by
other languages such as Visual Basic and Fortran. Standard calling convention
versions of functions are indicated by the “Std_” prefix for the function name in
gx_lib.h.

Visual Basic Programmer Support
Introduction
This section describes how to call GX functions in Oasis montaj from stand-alone
external 32-bit Visual Basic programs as well as Visual Basic DLL’s running under
Oasis montaj.

Visual Basic users will access GX Developer functions through the same
GEOGX.DLL that all developers use. All methods in GEOGX.DLL are exported both
in the “cdecl” and “stdcall” calling convention.

Part 5 – Working with other languages 99

Programmers using this interface must be experienced in using their own Visual
Basic programming environment.

As we are moving to a .NET platform, we not longer provide Visual Basic samples.
Visual Basic applications will continue to execute in Oasis montaj 6.0 if they are
relinked to the new GEOGX dll using the headers provided.

FORTRAN Programmer Support
Introduction
Currently, it is not possible to link directly with DLLs created from FORTRAN code.
However, using the Geosoft Inc. version of the “F2C” FORTRAN-to-C translation
program with carefully modified FORTRAN source code, it is possible to create “C”
DLLs which may be called from a GX. This may normally be accomplished with a
fraction of the effort that would be required to rewrite the FORTRAN code in C. The
F2C program recognises standard “vanilla” FORTRAN-77 code, with the exception
of certain I/O functions noted below.

It is also not possible to create a stand-alone FORTRAN program. However, you can
create a simple stand-alone C program that created the Geosoft object pointer and
calls a FORTRAN derived subroutine to do all the work of a FORTRAN program.
See the section on C programming for more information on how to create a stand-
alone C program.

Installation
FORTRAN support is available with the GX Developer installation. No additional
modules must be installed. The main directories are in apps\examples\fortran:

f2c\ Contains the f2c program to convert Fortran
programs to C code:

f2c.exe f2c program

f2clib.h f2c standard header file for f2c
converted C files.

forlib.h f2c in-line fortran functions.

example\ A sample fortran subroutine that reads and
writes a grid file.

Preparing your FORTRAN code for F2C
It is essential that the FORTRAN code be carefully examined and altered, not only
for compatibility with the Geosoft programming environment, but to allow for
successful conversion by the F2C utility. The following steps must be taken:

100 Part 5 – Working with other languages

REMOVING FORTRAN I/O

All input/output statements, whether to the screen or to a file, must be eliminated or
replaced with calls to Geosoft library functions. Library functions are accessed
through intermediate routines called “wrappers”. A “wrapper” function goes “around”
a library function, be it a Geosoft subroutine or one provided externally, to make it
callable by the GX or the converted FORTRAN routine (See Creating Wrapper
Functions below).

All parameters formerly requested at run-time through a screen prompt must now be
passed as parameters into the subroutines. These parameters are normally obtained
using a GX dialog. In some cases it may be necessary to add new functionality (such
as defining default values). Likewise, output parameters, formerly written to the
screen, must be passed out, or written to a file via its Geosoft object handle.

Illegal FORTRAN commands (i.e. those not supported by this version of F2C)
include: read, write, print, open, close, rewind. Access to individual files is
accomplished using the handle to the file object, and calling the appropriate Geosoft
library function.

It is at the linking stage that you will discover any illegal FORTRAN I/O functions
that have not been removed.

CREATING WRAPPER FUNCTIONS

There are two distinct types of “wrapper” functions. The first lies between the GX
and the converted FORTRAN code. It is called by the GX, and itself calls the
converted-to-C FORTRAN subroutine(s). The example file GXX_EXAMPLE.C
demonstrates one of these wrapper functions.

The second type of wrapper function is called by the converted FORTRAN
subroutines, and provides access to Geosoft library functions. In our example, those
routines have the suffix "_WF". All are contained in the file WFUNCS.C.

ENABLING ERROR HANDLING

All routines which can fail should pass the error variable ("ierr" in our examples).
Upon failure, an error message should be registered (see below), and ierr is set to 1.
Control is immediately returned to the calling function. The calling function always
checks the value of ierr returned, and passes control up, if necessary. The
FORTRAN “STOP” is forbidden.

If an error occurs in a Geosoft GX library function, the error condition is registered
internally and the method will fail. In the WFUNC.C example, various Geosoft GX
library functions are called in order to handle (for instance) reads and writes to grids.
The sCheckTerminate_GEO function is called (using the CHECK_STOP macro)
after each function to determine if an error has occurred. The value of ierr is set to 1,
and control is returned to the calling function.

Error messages are normally stored in a text file (see EXAMPLE.ERR below). When
an error is detected, the relevant error message is registered, and optionally, one or
more numeric or string parameters may be set within the message. Once control has

Part 5 – Working with other languages 101

been passed out the routine and up the calling chain, the registered error message will
be displayed to the user via a dialog.

To register an error and set values within the error message, see the following
functions in WFUNCS.C:

registererr_wf__ : Register the error

seterrparmi_wf__ : Use an integer as a replaceable parameter
seterrparmr_wf__ : Use a floating point value as a replaceable parameter

seterrparms_wf__ : Use a character string as a replaceable parameter

DEFINING GLOBAL VARIABLES

The first operation performed within the wrapper function is to define as a global
variable the handle to the Geosoft object. The Geosoft object is required by all
Geosoft library functions. In WFUNCS.C, this is accomplished with a call to the
InitGlobals_WF function, which defines the global structure WF_GLOBALS. This
function also sets up the registration for error messages, using the user-supplied error
message file.

OPENING GRIDS, FILES FOR READING AND WRITING, AND OTHER GEOSOFT OBJECTS

FORTRAN code uses the OPEN statement to assign a unit number to a file.
Subsequently, this unit number is used to read or write data to the file. In converted
code, a wrapper function is called instead. In place of FORTRAN unit numbers, a
handle to a Geosoft grid object (IMG), or file object (BF) is returned and used in
subsequent calls for reading and writing. These objects must eventually be destroyed
with calls to the CloseXXX functions (which call the Destroy_OBJECT GX
functions). Normally, the destruction occurs before control passes from the routine in
which the object is created.

Note: It is important, in functions that return an object handle (such as occurs in the
WFUNCS.C function newggrid_wf__), to reset a returned object's handle
to 0 if an error occurs in the object creation. This is so the calling function will
not try to destroy the returned object when it exits.

CALLING GEOSOFT LIBRARY FUNCTIONS

The range of GX library functions listed in the library header (GXH) files can be
accessed from a “C” routine by making a few changes in the way they are called.
Here is an example, using the WriteY_IMG function used in the WFUNCS.C
function PutRow_WF:

The prototype as it appears in IMG.GXH:
[geogx] void
WriteY_IMG(IMG, // IMG handle
 int, // element # in y (row #)
 int, // beginning element # in x to write (0 is the first)
 int, // # elements to write (0 for whole vector)
 VV); // VV handle

102 Part 5 – Working with other languages

As it appears in GX_LIB.H:
GX_WRAPPER_FUNC GX_HANDLE GX_WRAPPER_CALL
WriteY_IMG(GX_VAR GX_OBJECT_PTR,
 GX_CONST GX_HANDLE_PTR,
 GX_CONST GX_LONG_PTR,
 GX_CONST GX_LONG_PTR,
 GX_CONST GX_LONG_PTR,
 GX_CONST GX_HANDLE_PTR);

Finally, as it is used in WFUNCS.C:
WriteY_IMG(Globals.pGeo, // GX object pointer handle
 // (defined in InitGlobals())
 long *plIMG, // handle to the IMG object
 long *plRow, // Row #
 long *plCol0, // First column
 long *plNCol, // Columns to write
 long *plVV); // handle to the VV object

There are a couple of points to note:

• A new, first argument must precede all those listed in the GXH file. This is the
Geosoft object handle; in our examples it is defined within the global structure as
“Global.pGeo”. The GX variable types “int”, “real” and “string” are replaced
in the “C” wrapper with the pointers “long *”, “double *” and “char *”.

• In WFUNCS.C, all the Geosoft functions use variables accessed by reference.
Since the FORTRAN calls typically use float (REAL*4) variables, you will have
to use the following procedure to convert from a float to a double variable:

 dTempDouble = *fFortranReal4;
 GeosoftFunction(Globals.pGeo, &dTempDouble);

CALLING THE CONVERTED FORTRAN ROUTINES

The file GXX_EXAMPLE.C illustrates the GX wrapper function used to call the
converted FORTRAN routine. The call to the routine is preceded by a call to
InitGlobals_WF. This MUST be called in order to initialise the global structure
with the value of the Geosoft object pointer, if any call to a Geosoft library function is
to made from within the routine, including the creation of grid and file resources, and
the registration of error messages.

As in the WFUNCS.C example above, some type conversion may be necessary
between the input parameters and the arguments required by the converted
FORTRAN routines. In may be necessary to pad string variables with spaces to their
full length, because comparisons of strings in the F2C’d versions of FORTRAN files
compare the entire length of the string.

Function prototypes of converted “C” functions should be taken directly from the
F2C’d version of the FORTRAN routine. They will contain additional underscores in
the name, and may contain additional arguments, such as the lengths of character
strings being passed in.

Part 5 – Working with other languages 103

CREATING A PROGRESS INDICATOR

An example of how the progress indicator is implemented is found in the file
EXAMPLE.F. For the progress meter to function, the metering must be turned on in
the original calling GX by calling Progress_SYS(1), or by calling the
appropriate GX wrapper function in your C code:
Progress_SYS(Globals.pGeo, 1). Updates are accomplished using the
ProgUpdate_SYS or the ProgUpdateL_SYS functions. Finally,
iCheckStop_SYS() can be placed following calls to ProgUpdate_SYS to stop
the process when the user selects "Cancel" on the progress update window.

INCLUDE AND ERROR MESSAGE FILES

EXAMPLE.GXH

Prototypes for the wrapper functions called from the GX (from the EXAMPLE.GXC
code) reside in GX header (GXH) files. Note that two versions of some exist, with
and without an initial "I". The F2C functions generally require that the actual string
length be passed along with the string, but for convenience, the version called from
the GX can determine the string length itself, and reduce the number of variables the
user must specify for the call. The name of the function has been pre-pended with the
tag “YOUR” to distinguish it from regular Geosoft library functions. It is a good
practice to use a unique beginning identifier for your own collection of functions to
ensure uniqueness among the larger family of GX functions, as their number
continues to expand.

Note that the name of the DLL must appear in the function prototype, enclosed in
square brackets.

WRAPPERS.H

This file is included by both wrapper function files: WFUNCS.C and
GXX_EXAMPLE.C. . It should remain in the same directory as the above “C” code.
It contains the definition of the Global structure, function prototypes (both for the
“_WF” functions and the converted FORTRAN routine), and any pre-defined
constants.

GX_DEFINE.H, GX_LIB.H, GX_EXTERN.H

These files may be found in the GxDev\c\include directory. This location should be
placed in the “Include Files” path, specified in the compiler’s project workspace.
They contain information on the Geosoft function libraries. The GX_DEFINE.H file
contains definitions of constant values and parameters. The GX_LIB.H file contains
“C” prototypes for the library functions. Both GX_DEFINE.H and GX_LIB.H are
derived directly from the Geosoft library GXH header files, and so each function in
GX_LIB.H has a corresponding entry in the relevant header file, which should be
consulted for help on function usage. The GX_EXTERN.H file is used by third party
developers wishing to build stand-alone applications that access Geosoft functions.
This module holds the functions needed to start a Geosoft session. It also contains
prototypes for several functions for reading from and writing to binary files, which

104 Part 5 – Working with other languages

are not found in the regular GX libraries, but which are useful in the context of third
party software applications that need access to binary data.

F2C.H

This include file is included automatically within the F2C output files. It should
remain in the same directory as the converted “C” code. If an original FORTRAN
routine is duplicated over two or more files, the duplicates should be commented out,
and a "C" prototype included here. This prototype should be taken directly from the
F2C output.

FORLIB.H, F2CLIB.H

These files may be found in the GxDev\gxh directory. This location should be placed
in the “Include Files” path, specified in the compiler’s project workspace. They
include function prototypes and definitions required by the converted FORTRAN “C”
files.

EXAMPLE.ERR

This file contains the error messages. The "%" variables are replaced parameters,
which may be set using the “seterrparm” functions defined in WFUNCS.C. The error
file itself is registered inside the InitGlobals function.

Running F2C and Building the DLL
The batch file DOF2C.BAT demonstrates the call required to convert the
EXAMPLE.F file to EXAMPLE.C. The user should ensure that F2C.EXE is in the
current path. The “C” output is not pretty, but it works. You should never change the
C created by F2C. If you have problems in your final program, always fix the
problems in your FORTRAN source code.

A list of errors, warnings and message may be produced. In the absence of errors, a
listing of the subroutines converted is output.

The Microsoft “C” Version 6.0 build file EXAMPLE.DSW is included. It compiles
the “C” files EXAMPLE.C, GXX_EXAMPLE.C and WFUNCS.C and produces the
dynamic link library file EXAMPLE.DLL. The only “special” compiler setting, other
than the defaults given for a new “WIN32 Dynamic Link Library”, is that the Geosoft
wrapper function library GEOGX.LIB should be included in the “Object/library
modules” field in the “General” category of the “Link” tab in “Project Settings”.
Remember to add the location of the include files to the “Include Files” section of the
“Directories” tab in the “Options” dialog. The DLL should be written to the Geosoft
directory, or at least be included in the path.

Running the EXAMPLE GX
The Example GX opens a grid, multiplies it by a given factor, and creates a new grid.
The GRC, GXC and RTF files necessary to create the GX are included for your
inspection, along with the GX itself. To run the GX from within Oasis montaj, select
“Run GX” from the “GX” menu, or select the “GX” button on the toolbar, and select
the EXAMPLE.GX file using the open file dialog. Select a grid to open, and a new

Part 5 – Working with other languages 105

grid name to create. Input and output grid types are selected as usual. Select a
multiplication factor, and press “Ok” to begin. The progress indicator will indicate the
current progress, as the grid is processed.

Licensing Issues
Functions that are not licensed to run on the computer at run time will produce an
error when the function is called. Note that this means a function may work on a
development computer that is licensed to use a particular function, but when it is run
on a user’s computer it will fail if that user is not licensed to use that function.

Programming Support
At this time, Geosoft is not in a position to offer programming support to FORTRAN
programmers except on a casual basis. Licensed GX Developers may obtain support
for GX development questions, and these may be useful for supporting FORTRAN
programming requirements, but our support channels cannot support FORTRAN
questions. We are currently reviewing our support strategy for this development and
we hope to announce a support offering some time in the future.

.NET Programmer Support
This section describes how to call the GX function library from a managed assembly.
The assembly may be a shared library that is invoked by Oasis montaj or a stand-
alone windows application.

Managed applications invoke GX functions through the GX.NET API (Application
Programming Interface) which is distributed through the geonet.dll assembly, which
is distributed with GX developer in the apps\dll folder and installed in the Microsoft
Global Assembly Cache (GAC) with instances of montaj.

Note that, unlike other GX languages, development against the geonet assembly is
linked to a specific version of geonet. Oasis montaj extensions will work with
different versions of Oasis montaj as long as the version that was originally compiled
against is available in the GAC. We recommend that GX developers install the
version they used in the GAC when distributing montaj extensions, or place the
geonet.dll in the same directory as their standalone executables.

Developers using this interface must be familiar with Microsoft .NET, C# and the
Microsoft .NET Framework. Oasis montaj was developed using Microsoft Visual
Studio.NET 2005 and the sample programs are supplied with a C# project files.
Programmers using other development environments must modify their environment
somewhat to address their own situation.

Geosoft recommends either the commercial version of Visual Studio or Visual Studio
Express for developing .Net solutions.

External Stand-Alone Applications
You can create programs that run independent of Oasis montaj, yet utilize Oasis’s
powerful GX library. These programs must first initialize GX.NET library before

http://msdn2.microsoft.com/en-us/vstudio/�
http://www.microsoft.com/express/�
http://www.microsoft.com/express/�

106 Part 5 – Working with other languages

they begin calling any GX functions. It is also important to note that an external
program may not have access to all member functions that might be available to an
assembly running within Oasis montaj.

Refer to <Program Files>\Geosoft\GX Developer\apps\examples\CSharp\chanadd
for a simple example of a console program.

1. Instantiate the GX.NET libraries by calling the 5 parameter CGX_NET
constructor.
CGX_NET hGXNet = new CGX_NET (programName, version,
 maxMemory, windowHandle, flags);

2. Call GX functions as required. (See the GX.NET API documentation for a full list
of all the classes and their associated methods.)

Assemblies within Oasis montaj
Refer to <Program Files>\Geosoft\GX Developer\gxnet\src\gxnet.csproj for an
example of a C# assembly that is called from within Oasis montaj (it includes all the
Oasis montaj .Net GXs). Note that you will likely need to fix the locations of the
referenced assemblies in this project.

1. Create a new Class Library in Visual Studio and add assemblies from <Program
Files>\Geosoft\GX Developer\apps\redist\bin as references. See gxnet.csproj for
an example.

2. By double clicking on the following file in that project some templates for Visual
Studio will be installed to quickly create .Net GXs from scratch:
Templates\GeosoftTemplates.vsi

3. This will allow you to add well documented starting code for one of three styles
of GXs. This can be done by adding a new item through the context menu in the
Solution Explorer and picking one of “Geosoft GX”, “Geosoft Advanced GX” or
“Geosoft Wizard GX” in the Geosoft section. Follow the comments in the
generated classes and form to start creating your GX.

4. Create a new menu item (see the section on Menus in Oasis montaj for a full
description) with the second parameter being in the form <assembly
name>(<class name>|<method>). The <class name> must be fully qualified. E.g:
dllname.dll(MyAssembly.MyGX;Run).

5. Place your assembly in the Oasis montaj bin directory and execute the menu item
to run the code. When redistributing your assembly to other machines be sure to
install the version of geonet you referenced into the GAC as mentioned above to
ensure that it will work with any version of Oasis montaj.

It is important to note that you cannot call the 5 parameter CGX_NET constructor as
this will try to initialize the GX.NET API which is already initialized. This could
result in your application crashing. This constructor is for use by external applications
like the example found in <Program Files>\Geosoft\GX
Developer\apps\examples\csharp\chanadd.

Part 5 – Working with other languages 107

Note, in an assembly running inside montaj, all methods beginning with “App” are
accessible. The App methods control or use the Oasis montaj GUI and hence rely on
Oasis montaj being present.

Error Handling
If an error occurs in one of the GX.NET API functions, the error condition is
registered internally and a Geosoft.CERROR exception is thrown. This will enable
you to wrap your code with try/catch blocks in order to handle the error as you deem
fit.

Stand Alone GUI Applications
If your program is a windows application we recommend that you enable Geosoft
GUI support by passing the handle of your main window into the CGX_NET
constructor as the fourth parameter. This will allow you to call
CGX_NET.ShowError() and see a GUI error message. It will also enable progress bar
support when you use the CSYS.Progress() function.

Licensing Issues
If a licensed method is called and the computer that is executing your assembly does
not have the required license and error will be thrown. This might result in your
program running successfully on one computer but may not on another computer with
a different license.

108 Part 6 - Using the GX API Externally

Part 6 - Using the GX API Externally
Introduction
To create applications that run outside Oasis montaj, developers use the External
API, which consists of a set of redistributable files that must be installed with your
application. Redistributing your application and the 3rd party components can usually
be achieved fairly easily by making use of the Windows Installer XML (WIX)
Toolset or another 3rd install creation utility but this is outside the scope of this
document.

The recommended way to create an application (which only makes use of unlicensed
functionality) that can operate completely independent of an Oasis montaj
installation is to install all the files and GeosoftFiles directory in <Program
Files>\Geosoft\GX Developer\apps\redist\bin right next to the binaries that would be
making use of the API externally. Although it might be possible to remove some files
that might not be used it cannot reliably be supported, nor will any guidelines be
provided on how to do this.

It is also possible to make use of of an Oasis montaj or Oasis montaj Viewer
installation to reduce the application footprint and make use of licensed functionality.
To do this the GeosoftFiles directory above can be omitted and a geosoft.key file then
placed next to the applications and other files containing a single text line with the
name of the application as found in the registry (e.g. “Oasis montaj”). See the
Registry section below for more info on what this means.

In addition to these files your application will need to install and/or check for the
following 3rd party redistributables. Note that this is not necessary when making use
of an Oasis montaj installation as described in the paragraph above.

DLL Description

Microsoft Visual Studio
2005 Redistributable
Package

DLL’s that provides the C Runtime functions, MFC and
STL functionality on which the Geosoft dll’s rely. Available
from here.

XCeedCry Component Found in the installation at: ...\redist\system32_register

This is a COM component and needs to be installed and
registered as a shared component in <system32>

Microsft .Net 2.0
Framework

Found here.

No registry settings of any kind are required to be setup, but the directory where the
files are installed should be writable to the Windows user as temporary files and a
user folder will be created underneath.

http://wix.sourceforge.net/�
http://wix.sourceforge.net/�
http://www.microsoft.com/downloads/details.aspx?familyid=32bc1bee-a3f9-4c13-9c99-220b62a191ee&displaylang=en�
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856eacb-4362-4b0d-8edd-aab15c5e04f5&displaylang=en�

Part 6 - Using the GX API Externally 109

We can also recommend the Depends.exe utility for debugging any dll dependency
problems (see http://www.dependencywalker.com/) that might arise.

Registry
Although no registry settings are required to create external applications, we do
recommend that you register specific directories for your application if you want to
control where temporary files and user directories will be located. During execution,
applications using the external API will create log and temp files in the current
working directory. To have the Log and temp files sent to a different directory, it is
required that you create a key file for your application. This file, called geosoft.key
must be in the same directory as your EXE. It contains the name of your application
{MyApp}. With this key file, the Create_GEO method will look in the registry under
the following key for settings:

 HKEY_LOCAL_MACHINE\SOFTWARE\Geosoft\{MyApp}\Environment

GEOTEMP Where all temp files will be placed.

GEOSOFT Where the contents of the GeosoftFiles directory is
(which can be omitted if next to the application).

GEOSOFT2 Where all user files will be placed.

This will force all temp and log file to be created in the GEOTEMP directory. Please
note that the key names can conflict with Geosoft keys as well as other developer
keys so please use descriptive names.

Licensing
The functions available in this API are the same ones available under the GX
programming interface for Oasis montaj. All the [_public] methods are provided free
and can used by anyone without restriction by Geosoft. However, [_licensed] and
[_extended] methods do require that Oasis montaj be installed with an appropriate
license. The “app” methods are a special group that may or may not be provided
outside Oasis montaj. If they are provided, they may not have the same behaviour as
they would if run inside Oasis montaj.

http://www.dependencywalker.com/�

110 Part 7 – UNICODE

Part 7 – UNICODE
Introduction
In versions of Oasis montaj prior to 6.2, all characters were stored as single-byte
characters and used as part of the local code page. This implied that maps and
databases created on a computer with a specific code page would not display properly
on a computer with a different code page. To resolve these issues and allow the use of
complex languages (Chinese), Oasis montaj was updated in 6.2 to use Unicode. This
now allows Oasis montaj to store and display characters of any language
consistently.

Implementation
To reduce the implementation costs a hybrid Unicode/UTF-8 approach was used. The
GUI elements based on MFC (dialogs, text boxes, menus) are fully Unicode aware
and enabled. This allows the application to receive input and display the full Unicode
specification.

The rest of the code source has been upgraded to the UTF-8 standard. This allows the
storage of Unicode strings in standard strings without requiring a large investment in
code modifications. File formats have been updated to support UTF-8 encoded
strings. This allows existing file formats to change only a little while providing the
full benefits of Unicode.

Text files have also been upgraded to the UTF-8 standard. New text files generated
by the system will contain the UTF-8 signature characters at the beginning of the file.

Compiler
The Geosoft GX compiler (GXC) has been upgraded to support UTF-8 encoded
source. Thus, users can create GX’s that have special characters in their GUI
elements (dialogs), in their parameters (INI settings) and even in their variable names.
The COPYCH gx found in the GX Developer source code section is an example of a
UTF-8 encoded GX in Chinese characters.

GX Developers
For GX developers the changes should have a very limited impact. We recommend
that all GX’s be recompiled for 6.2 to ensure that any special characters inside the GX
(usually the degree symbol) are converted to the proper UTF-8 encoding inside the
GX. Otherwise, existing GX’s should execute without problem.

Note that any code that manipulates strings directly should be reviewed as UTF-8
encoded strings can have between 1-6 bytes representing one character. UTF-8
special characters are always above 127 and as such should be left alone in your code.

Part 7 – UNICODE 111

API Interfaces
Any code making calls to the Geosoft API either from a DLL inside Oasis montaj or
from an 3rd party application must be aware of the interface they will use. In the
versions prior to 6.2, the GEOGX dll was the standard interface library for all calls
into the Geosoft API.

To provide the most compatibility to existing solutions Geosoft has created three API
interfaces:

GEOGX (ANSI)
The GEOGX interface provides ANSI support to all Geosoft API functions. All
strings used in this interface are single byte characters in the ANSI code page and are
converted to UTF-8 internally. Any result strings are internally converted from UTF-
8 into the ANSI code page. Any characters that cannot be converted to the ANSI code
page will be converted to question marks (?).

Although this is the default interface (to support existing applications), it suffers
performance penalties during the conversion between ANSI and UTF-8. Also, any
special characters that cannot be converted to ANSI will be lost. We recommend that
all applications use one of the other interfaces if possible.

GEOGX_U (UNICODE)
The GEOGX_U is a native Unicode interface for those applications that run
completely in Unicode mode. All strings used in this interface wide character
Unicode and will be converted to UTF-8 internally. Any result strings are internally
converted from UTF-8 to Unicode.

There is no loss of characters in this interface and only a small performance penalty
during the conversions. This interface is recommended for full Unicode applications.

GEOGX_UTF8 (UTF-8)
The GEOGX_UTF8 is a UTF-8 interface for those applications that use UTF-8 as
their standard. No conversion at all is needed as Oasis montaj runs in this mode
making this interface the fastest. This interface is recommended for applications that
use UTF-8 as their standard.

MFC DLLs Inside Oasis Montaj
For those developing DLLs that execute inside Oasis montaj it is important to
understand that 6.2 uses the Unicode version of MFC. We strongly recommend that
all third party DLLs also use the Unicode version of MFC to ensure a consistent
interface. Otherwise, your application will display GUI elements that are not Unicode
aware and enabled and this will cause confusion.

112 Part 8 – Efficient coding techniques

Part 8 – Efficient coding techniques
Introduction
This special section gives some examples on how to work efficiently with the GX
API. The code used in the examples uses GX.Net but keep in mind that the concepts
introduced also applies to GXC and other languages because of overhead incurred by
switching into GX API calls regardless of where the execution happens.

Mixed Code Efficiency
When working with mixed managed and unmanaged code performance becomes an
issue when switching from managed to unmanaged code all the time. In this case the
GX.Net API is a wrapper to unmanaged libraries so every call switches from
managed to unmanaged and back.

One should always try to minimize switching between the libraries by trying to get
data in bulk and/or doing the processing without multiple function calls to and from
managed code.

Examples
Say for instance we want to apply a special equation to values in two VVs and put it
in a third e.g.:
 double dSpecialEquation(double dX, double dY)
 {
 // Not so special after all
 return dX + dY;
 }

 void Run()
 {
 int iN = 10000000;

 DateTime dtStart;
 TimeSpan tsDuration;

 CVV oVVx = CVV.CreateExt(Constant.GS_DOUBLE, iN);
 CVV oVVy = CVV.CreateExt(Constant.GS_DOUBLE, iN);
 CVV oVVz = CVV.CreateExt(Constant.GS_DOUBLE, iN);

 oVVx.MakeMemBased();
 oVVy.MakeMemBased();
 oVVz.MakeMemBased();
 oVVx.FillReal(30.0);
 oVVy.FillReal(60.0);

 dtStart = DateTime.Now;
 for (i = 0; i<iN; i++)
 oVVz.SetReal(i, dSpecialEquation(oVVx.rGetReal(i),

oVVy.rGetReal(i)));
 tsDuration = DateTime.Now - dtStart;

Part 8 – Efficient coding techniques 113

 double dZ = oVVz.rGetReal(200);
 System.Diagnostics.Debug.WriteLine("That took " +

tsDuration.TotalSeconds + " seconds!");
 }

The output of Run gave me:
That took 372.045536 seconds!

That seemed very slow so I looked and found a VV function that does exactly what
my "special" equation does. This is the first thing a GX programmers should do,
always scan the API for some function that does exactly what he wants to do without
getting/setting single values one-by-one. The following change to the relevant section
results in:

dtStart = DateTime.Now;

 oVVx.Add(oVVy, oVVz);
 tsDuration = DateTime.Now - dtStart;
 double dZ = oVVz.rGetReal(200);
 System.Diagnostics.Debug.WriteLine("That took " +

tsDuration.TotalSeconds + " seconds!");

That took 0.8281356 seconds!

Note that this gives us the fastest time possible for adding 10 million numbers and
placing in a result vector in this code. Two more examples are given because there
may not always be a function readily available in the GX API for some cases. The
first example uses one of the powerful EXP classes (note that there is one for DU and
also IEXP that works on IMG objects). Also keep in mind that any equation can be
used, even an algorithm with multiple lines (see the classes' documentation for more
details).
 dtStart = DateTime.Now;
 CVVEXP oExp = CVVEXP.Create();
 oExp.AddVV(oVVx, "X");
 oExp.AddVV(oVVy, "Y");
 oExp.AddVV(oVVz, "Z");
 oExp.DoFormula("Z = X + Y;", Constant.STR_VERY_LONG);
 tsDuration = DateTime.Now - dtStart;
 double dZ = oVVz.rGetReal(200);

System.Diagnostics.Debug.WriteLine("That took " +
tsDuration.TotalSeconds + " seconds!");

That took 1.1093608 seconds!

We could also use the GX.Net vector classes that give direct access to the internal
data through simple typed indexes. NOTE: these only work if VVs (or VMs) are
memory based, which is why the MakeMemBased calls were used above.

114 Part 8 – Efficient coding techniques

 dtStart = DateTime.Now;
 GXNet.DoubleVector vDoublex = CGX_NET.GetDoubleVV(oVVx, iN);
 GXNet.DoubleVector vDoubley = CGX_NET.GetDoubleVV(oVVy, iN);
 GXNet.DoubleVector vDoublez = CGX_NET.GetDoubleVV(oVVz, iN);

 for (i = 0; i<iN; i++)
 vDoublez[i] = dSpecialEquation(vDoublex[i], vDoubley[i]);
 tsDuration = DateTime.Now - dtStart;
 double dZ = oVVz.rGetReal(200);
 System.Diagnostics.Debug.WriteLine("That took " +

tsDuration.TotalSeconds + " seconds!");

That took 0.937494 seconds!

This shows that even when doing the number crunching in managed code comparable
results can be achieved to doing it in unmanaged code.

	GX Developer User Guide & Reference Manual v7.0
	Geosoft GX Developer License Agreement
	Year 2000 Date Considerations

	Introduction
	Who should use GX Developer?
	How this manual is organized
	Hardware and Software Requirements
	Installing GX Developer
	Obtaining Additional Information and Help

	Part 1 - GX Developer Basics
	GXC Language
	Elements of GXC
	Statements
	Calling Functions
	Preprocessor Directives

	GRC Resources and Dialogs
	The FORM Resource
	FORM Components
	The LIST Resource
	List Components — Description
	The HELP Resource
	Using WinHelp or Compile HTML (*.CHM) Help Files
	Linking WinHelp or Compile HTML help to Oasis montaj GXs
	Step 1 – The GRC File
	Step 2 – The myhelp.ini file (Mapping File)
	Step 3 – Create a Custom Winhelp File
	Add custom Help INI to Oasis montaj
	Step 4 – Copy the Files and Restart Oasis montaj
	Combining Resources and Components

	Working with Menus
	SHELL item action

	Working with Toolbars
	File Names
	Internal commands
	Pop-Up Menus
	The SHELL command
	Displaying images for items in menus
	Controlling item activation
	How menus are loaded

	Geosoft Environment Settings (geosettings.meta)

	Part 2 - Working with GX Developer
	Building a GX Application Suite
	Object-Oriented Programming
	Differences between Procedural and Object-Oriented Programming
	Working with Library Functions

	GX Structure and Program Flow
	The COPY GX

	Working with Databases
	Opening and Locking a Database
	Selecting Lines for Processing
	Locking and Unlocking Lines and Channels

	Parameter Storage in Oasis montaj
	Parameter Storage in the geosettings META file
	Parameter Storage in the Project
	Parameter Storage in Oasis montaj objects

	Working with Maps
	Views and Groups
	Base and Data Views
	Opening and Locking a Map
	Accessing Views
	Starting a Drawing Group
	Setting Group Attributes
	Adding an Image to a Map
	Clipping Objects in a View
	Creating a Maker
	Working with 3D Views

	Termination and Error Handling
	The Exit_SYS function
	The Cancel_SYS function
	The Abort_SYS function
	Messages and Warnings to Users

	Using Progress Indicators
	Creating a “Wizard” GX
	Calling GXs from within a GX
	Preparing your GX to run as a Script
	Compilation and Debugging
	Command-Line Compilation
	Debugging Tips and Suggestions

	Part 3 – GX Function Libraries
	Classes and Handles
	Geosoft Licensing Issues
	VIEWGX – License Analysis

	Part 4 – GX Debugger
	Usage
	Notes

	Part 5 – Working with other languages
	Other Language Support
	C Programmer Support
	Introduction
	Installation
	Compilation Environment
	External Stand-Alone Applications
	DLLs within Oasis montaj
	Passing Arguments
	Accessing Data
	Error handling
	GUI Applications
	Licensing Issues
	Calling Conventions

	Visual Basic Programmer Support
	Introduction

	FORTRAN Programmer Support
	Introduction
	Installation
	Preparing your FORTRAN code for F2C
	Running F2C and Building the DLL
	Running the EXAMPLE GX
	Licensing Issues
	Programming Support

	.NET Programmer Support
	External Stand-Alone Applications
	Assemblies within Oasis montaj
	Error Handling
	Stand Alone GUI Applications
	Licensing Issues

	Part 6 - Using the GX API Externally
	Introduction
	Registry
	Licensing

	Part 7 – UNICODE
	Introduction
	Implementation
	Compiler
	GX Developers
	API Interfaces
	GEOGX (ANSI)
	GEOGX_U (UNICODE)
	GEOGX_UTF8 (UTF-8)

	MFC DLLs Inside Oasis Montaj

	Part 8 – Efficient coding techniques
	Introduction
	Mixed Code Efficiency
	Examples

